Response of spring wheat to elevated CO2:: The relationship between assimilation and stomatal resistance

被引:0
|
作者
Gruters, U [1 ]
Fangmeier, A [1 ]
Jager, HJ [1 ]
机构
[1] JLU Giessen, Inst Pflanzenokol, D-35392 Giessen, Germany
关键词
elevated CO2; Triticum aestivum; open-top chamber; gas exchange measurements; variable environment; WUE; stomatal resistance; assimilation; growth;
D O I
暂无
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Spring wheat (Triticum aestivum L. cv. Minaret) was exposed to 363 and 628 mu mol mol(-l) CO2 in open top chambers. Gas exchange was measured on flag leaves directly under the variable environmental conditions in the chambers, using a closed loop photosynthesis system. Under elevated CO2 strong stomatal closing response was found, causing reduction of mean transpiration rates by 50% and causing c(i)/c(a) ratio to be 0.51. The stomatal response probably was a result of low air humidity and drought stress during the measurements under elevated CO2. However, a photosynthetic stimulation due to CO2 was lacking and therefore instantaneous water use efficiency was nearly doubled. Boundary lines were used to show the reversed responses of assimilation (A) and stomatal resistance (R-s) to the environmental variables vapour pressure deficit and temperature and their differing responses to photon flux density. When plotting A against R-s a variable assimilation was found with low stomatal resistance. This behaviour was explained by rapid decreases of light intensity after full sunshine and faster response time of assimilation than that of stomata, when shading occured. Elevated CO2 increased the relation of maximum A and R-s and consequently increased intercellular CO2 concentration for these combinations. Under conditions of prolonged high light intensity and medium temperature photosynthesis was enhanced maximally in absolute terms, leading to an increase of 20.9%. It is discussed, that frequency and duration of conditions leading to the largest photosynthetic increases determine the growth response to CO2 in a variable environment.
引用
收藏
页码:605 / 612
页数:8
相关论文
共 50 条
  • [1] STOMATAL RESPONSE TO ENVIRONMENT AND A POSSIBLE INTERRELATION BETWEEN STOMATAL EFFECTS ON TRANSPIRATION AND CO2 ASSIMILATION
    HALL, AE
    SCHULZE, ED
    PLANT CELL AND ENVIRONMENT, 1980, 3 (06): : 467 - 474
  • [2] Modelling stomatal conductance of wheat: An assessment of response relationships under elevated CO2
    Houshmandfar, Alireza
    Fitzgerald, Glenn J.
    Armstrong, Roger
    Macabuhay, Allene A.
    Tausz, Michael
    AGRICULTURAL AND FOREST METEOROLOGY, 2015, 214 : 117 - 123
  • [3] RELATIONSHIP BETWEEN CO2 ASSIMILATION AND METABOLISM OF BENTAZONE IN WHEAT PLANTS
    RETZLAFF, G
    HAMM, R
    WEED RESEARCH, 1976, 16 (04) : 263 - 266
  • [4] Effect of elevated air CO2 concentration on the CO2 assimilation of winter wheat
    Harnos, N
    Szente, K
    Tuba, Z
    PHOTOSYNTHESIS: MECHANISMS AND EFFECTS, VOLS I-V, 1998, : 3491 - 3494
  • [5] DIFFERENCES BETWEEN THE FLAG LEAF AND THE EAR OF A SPRING WHEAT CULTIVAR (TRITICUM-AESTIVUM CV ARKAS) WITH RESPECT TO THE CO2 RESPONSE OF ASSIMILATION, RESPIRATION AND STOMATAL CONDUCTANCE
    KNOPPIK, D
    SELINGER, H
    ZIEGLERJONS, A
    PHYSIOLOGIA PLANTARUM, 1986, 68 (03) : 451 - 457
  • [7] Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress
    Zhu, Xiancan
    Cao, Qingjun
    Sun, Luying
    Yang, Xiaoqin
    Yang, Wenying
    Zhang, Hua
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [8] The impact of growth at elevated [CO2] on stomatal anatomy and behavior differs between wheat species and cultivars
    Wall, Shellie
    Cockram, James
    Vialet-Chabrand, Silvere
    Van Rie, Jeroen
    Galle, Alexander
    Lawson, Tracy
    JOURNAL OF EXPERIMENTAL BOTANY, 2023, 74 (09) : 2860 - 2874
  • [9] STOMATAL CONDUCTANCE AND CO2 ASSIMILATION AS SCREENING TOOLS FOR DROUGHT RESISTANCE IN SORGHUM
    ALHAMDANI, SH
    MURPHY, JM
    TODD, GW
    CANADIAN JOURNAL OF PLANT SCIENCE, 1991, 71 (03) : 689 - 694
  • [10] ELEVATED CO2 EFFECTS ON STOMATAL DENSITY OF WHEAT AND SOUR ORANGE TREES
    ESTIARTE, M
    PENUELAS, J
    KIMBALL, BA
    IDSO, SB
    LAMORTE, RL
    PINTER, PJ
    WALL, GW
    GARCIA, RL
    JOURNAL OF EXPERIMENTAL BOTANY, 1994, 45 (280) : 1665 - 1668