Response of spring wheat to elevated CO2:: The relationship between assimilation and stomatal resistance

被引:0
|
作者
Gruters, U [1 ]
Fangmeier, A [1 ]
Jager, HJ [1 ]
机构
[1] JLU Giessen, Inst Pflanzenokol, D-35392 Giessen, Germany
关键词
elevated CO2; Triticum aestivum; open-top chamber; gas exchange measurements; variable environment; WUE; stomatal resistance; assimilation; growth;
D O I
暂无
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Spring wheat (Triticum aestivum L. cv. Minaret) was exposed to 363 and 628 mu mol mol(-l) CO2 in open top chambers. Gas exchange was measured on flag leaves directly under the variable environmental conditions in the chambers, using a closed loop photosynthesis system. Under elevated CO2 strong stomatal closing response was found, causing reduction of mean transpiration rates by 50% and causing c(i)/c(a) ratio to be 0.51. The stomatal response probably was a result of low air humidity and drought stress during the measurements under elevated CO2. However, a photosynthetic stimulation due to CO2 was lacking and therefore instantaneous water use efficiency was nearly doubled. Boundary lines were used to show the reversed responses of assimilation (A) and stomatal resistance (R-s) to the environmental variables vapour pressure deficit and temperature and their differing responses to photon flux density. When plotting A against R-s a variable assimilation was found with low stomatal resistance. This behaviour was explained by rapid decreases of light intensity after full sunshine and faster response time of assimilation than that of stomata, when shading occured. Elevated CO2 increased the relation of maximum A and R-s and consequently increased intercellular CO2 concentration for these combinations. Under conditions of prolonged high light intensity and medium temperature photosynthesis was enhanced maximally in absolute terms, leading to an increase of 20.9%. It is discussed, that frequency and duration of conditions leading to the largest photosynthetic increases determine the growth response to CO2 in a variable environment.
引用
收藏
页码:605 / 612
页数:8
相关论文
共 50 条
  • [31] Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes
    Yu, Q
    Zhang, YG
    Liu, YF
    Shi, PL
    ANNALS OF BOTANY, 2004, 93 (04) : 435 - 441
  • [32] THE RELATIONSHIP BETWEEN CO2 ASSIMILATION AND ELECTRON-TRANSPORT IN LEAVES
    HARBINSON, J
    GENTY, B
    BAKER, NR
    PHOTOSYNTHESIS RESEARCH, 1990, 25 (03) : 213 - 224
  • [33] Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature
    Jauregui, Ivan
    Aroca, Ricardo
    Garnica, Mara
    Zamarreno, Angel M.
    Garcia-Mina, Jose M.
    Serret, Maria D.
    Parry, Martin
    Irigoyen, Juan J.
    Aranjuelo, Iker
    PHYSIOLOGIA PLANTARUM, 2015, 155 (03) : 338 - 354
  • [34] Acclimation of photosynthesis and stomatal conductance to elevated CO2 in canopy leaves of wheat at two nitrogen supplies
    Del Pozo, A.
    Perez, P.
    Morcuende, R.
    Gutierrez, D.
    Alonso, A.
    Martinez-Carrasco, R.
    WHEAT PRODUCTION IN STRESSED ENVIRONMENTS, 2007, 12 : 611 - +
  • [35] Stomatal response to increased CO2 concentration
    Morison, JIL
    JOURNAL OF EXPERIMENTAL BOTANY, 1998, 49 : 443 - 452
  • [36] Response of spring crops and associated aphids to elevated atmospheric CO2 concentrations
    Oehme, V.
    Hoegy, P.
    Franzaring, J.
    Zebitz, C. P. W.
    Fangmeier, A.
    JOURNAL OF APPLIED BOTANY AND FOOD QUALITY, 2011, 84 (02): : 151 - 157
  • [37] Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat
    Li, FS
    Kang, SZ
    Zhang, JH
    AGRICULTURAL WATER MANAGEMENT, 2004, 67 (03) : 221 - 233
  • [38] Interaction of Nitrate Assimilation and Photorespiration at Elevated CO2
    Kraemer, Konrad
    Brock, Judith
    Heyer, Arnd G.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [39] Simulation of spring wheat responses to elevated CO2 and temperature by using CERES-wheat crop model
    Laurila, H
    AGRICULTURAL AND FOOD SCIENCE IN FINLAND, 2001, 10 (03): : 175 - 196
  • [40] Seasonal CO2 assimilation and stomatal limitations in a Pinus taeda canopy
    Ellsworth, DS
    TREE PHYSIOLOGY, 2000, 20 (07) : 435 - 445