Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress

被引:48
|
作者
Zhu, Xiancan [1 ]
Cao, Qingjun [2 ]
Sun, Luying [1 ]
Yang, Xiaoqin [1 ]
Yang, Wenying [1 ]
Zhang, Hua [1 ]
机构
[1] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun, Jilin, Peoples R China
[2] Jilin Acad Agr Sci, Changchun, Jilin, Peoples R China
来源
关键词
carbon isotope discrimination; stomatal aperture; stomatal conductance; stomatal density; water potential; CARBON-ISOTOPE DISCRIMINATION; LEAF GAS-EXCHANGE; SALT STRESS; POTATO LEAVES; SALINITY; PHOTOSYNTHESIS; PHOSPHORUS; WATER; SIZE; NITROGEN;
D O I
10.3389/fpls.2018.01363
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Stomata play a critical role in the regulation of gas exchange between the interior of the leaf and the exterior environment and are affected by environmental and endogenous stimuli. This study aimed to evaluate the effect of the arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis, on the stomatal behavior of wheat (Triticum aestivum L.) plants under combination with elevated CO2 and NaCl stress. Wheat seedlings were exposed to ambient (400 ppm) or elevated (700 ppm) CO2 concentrations and 0, 1, and 2 g kg(-1) dry soil NaCl treatments for 10 weeks. AM symbiosis increased the leaf area and stomatal density (SD) of the abaxial surface. Stomatal size and the aperture of adaxial and abaxial leaf surfaces were higher in the AM than non-AM plants under elevated CO2 and salinity stress. AM plants showed higher stomatal conductance (g(s)) and maximum rate of g(s) to water vapor (g(smax)) compared with non-AM plants. Moreover, leaf water potential (Psi)was increased and carbon isotope discrimination (Delta C-13) was decreased by AM colonization, and both were significantly associated with stomatal conductance. The results suggest that AM symbiosis alters stomatal morphology by changing SD and the size of the guard cells and stomatal pores, thereby improving the stomatal conductance and water relations of wheat leaves under combined elevated CO2 and salinity stress.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Modelling stomatal conductance of wheat: An assessment of response relationships under elevated CO2
    Houshmandfar, Alireza
    Fitzgerald, Glenn J.
    Armstrong, Roger
    Macabuhay, Allene A.
    Tausz, Michael
    AGRICULTURAL AND FOREST METEOROLOGY, 2015, 214 : 117 - 123
  • [2] Editorial: Modulation of Stomatal Response by Elevated CO2 in Plants Under Drought and Heat Stress
    Li, Xiangnan
    Palta, Jairo A.
    Liu, Fulai
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [3] Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes
    Yu, Q
    Zhang, YG
    Liu, YF
    Shi, PL
    ANNALS OF BOTANY, 2004, 93 (04) : 435 - 441
  • [4] Acclimation of photosynthesis and stomatal conductance to elevated CO2 in canopy leaves of wheat at two nitrogen supplies
    Del Pozo, A.
    Perez, P.
    Morcuende, R.
    Gutierrez, D.
    Alonso, A.
    Martinez-Carrasco, R.
    WHEAT PRODUCTION IN STRESSED ENVIRONMENTS, 2007, 12 : 611 - +
  • [5] Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat
    Li, FS
    Kang, SZ
    Zhang, JH
    AGRICULTURAL WATER MANAGEMENT, 2004, 67 (03) : 221 - 233
  • [6] Increasing atmospheric CO2 differentially supports arsenite stress mitigating impact of arbuscular mycorrhizal fungi in wheat and soybean plants
    AbdElgawad, Hamada
    El-Sawah, Ahmed M.
    Mohammed, Afrah E.
    Alotaibi, Modhi O.
    Yehia, Ramy S.
    Selim, Samy
    Saleh, Ahmed M.
    Beemster, Gerrit T. S.
    Sheteiwy, Mohamed S.
    CHEMOSPHERE, 2022, 296
  • [7] Response of spring wheat to elevated CO2:: The relationship between assimilation and stomatal resistance
    Gruters, U
    Fangmeier, A
    Jager, HJ
    VERHANDLUNGEN DER GESELLSCHAFT FUR OKOLOGIE, VOL 26, 1996, : 605 - 612
  • [8] Elevated CO2 Suppresses the Vanadium Stress in Wheat Plants under the Future Climate CO2
    Alsherif, Emad A.
    AbdElgawad, Hamada
    PLANTS-BASEL, 2023, 12 (07):
  • [9] Increasing stomatal conductance in response to rising atmospheric CO2
    Purcell, C.
    Batke, S. P.
    Yiotis, C.
    Caballero, R.
    Soh, W. K.
    Murray, M.
    McElwain, J. C.
    ANNALS OF BOTANY, 2018, 121 (06) : 1137 - 1149
  • [10] Elevated CO2 and temperature increase arbuscular mycorrhizal fungal diversity, but decrease root colonization, in maize and wheat
    Liu, Zihao
    Yu, Zhenhua
    Song, Bin
    Li, Yansheng
    Fang, Jie
    Guo, Yaping
    Jin, Jian
    Adams, Jonathan M.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 873