A Priori Feedback Estimates for Multiscale Reaction-Diffusion Systems

被引:2
|
作者
Lind, Martin [1 ]
Muntean, Adrian [1 ]
机构
[1] Karlstad Univ, Dept Math & Comp Sci, S-65188 Karlstad, Sweden
关键词
Feedback finite element method; Galerkin approximation; micro-macro coupling; multiscale reaction-diffusion systems; POROUS-MEDIA; BOUNDARY;
D O I
10.1080/01630563.2017.1369996
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the approximation of a multiscale reaction-diffusion system posed on both macroscopic and microscopic space scales. The coupling between the scales is done through micro-macro flux conditions. Our target system has a typical structure for reaction-diffusion flow problems in media with distributed microstructures (also called, double porosity materials). Besides ensuring basic estimates for the convergence of two-scale semi-discrete Galerkin approximations, we provide a set of a priori feedback estimates and a local feedback error estimator that help in designing a distributed-high-errors strategy to allow for a computationally ecient zooming in and out from microscopic structures. The error control on the feedback estimates relies on two-scale-energy, regularity, and interpolation estimates as well as on a fine bookeeping of the sources responsible with the propagation of the (multiscale) approximation errors. The working technique based on a priori feedback estimates is in principle applicable to a large class of systems of PDEs with dual structure admitting strong solutions.
引用
收藏
页码:413 / 437
页数:25
相关论文
共 50 条
  • [41] Localized patterns in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    CHAOS, 2007, 17 (03)
  • [42] Reaction-Diffusion Systems and Nonlinear Waves
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 297 - 303
  • [43] Spirals and targets in reaction-diffusion systems
    Bhattacharyay, A
    PHYSICAL REVIEW E, 2001, 64 (01): : 4 - 016113
  • [44] Nonequilibrium potential in reaction-diffusion systems
    Wio, HS
    FOURTH GRANADA LECTURES IN COMPUTATIONAL PHYSICS, 1997, 493 : 135 - 195
  • [45] Wave optics in reaction-diffusion systems
    Sainhas, J
    Dilao, R
    PHYSICAL REVIEW LETTERS, 1998, 80 (23) : 5216 - 5219
  • [46] Propagating fronts in reaction-diffusion systems
    Vives, D
    Armero, J
    Marti, A
    Ramirez-Piscina, L
    Casademunt, J
    Sancho, JM
    Sagues, F
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1998, 23 (1-2) : 239 - 260
  • [47] Periodic kinks in reaction-diffusion systems
    J Phys A Math Gen, 3 (L67):
  • [48] ON NONLINEAR COUPLED REACTION-DIFFUSION SYSTEMS
    梅茗
    ActaMathematicaScientia, 1989, (02) : 163 - 174
  • [49] ANOMALOUS DYNAMICS IN REACTION-DIFFUSION SYSTEMS
    HAVLIN, S
    ARAUJO, M
    LARRALDE, H
    SHEHTER, A
    STANLEY, HE
    TRUNFIO, P
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1994, 16 (08): : 1039 - 1051
  • [50] On the stability of binary reaction-diffusion systems
    Rionero, S
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (7-9): : 773 - 784