No-reference image quality assessment with multi-scale weighted residuals and channel attention mechanism

被引:4
|
作者
Wang, Changzhong [1 ]
Lv, Xiang [1 ]
Ding, Weiping [2 ]
Fan, Xiaodong [1 ]
机构
[1] Bohai Univ, Coll Math, Jinzhou 121013, Liaoning, Peoples R China
[2] Nantong Univ, Coll Informat Sci & Technol, Nantong 226000, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-scale; No-reference image quality assessment; Channel attention; Active weighted mapping strategy; ENHANCEMENT;
D O I
10.1007/s00500-022-07535-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid development of deep learning, no-reference image quality assessment (NR-IQA) based on convolutional neural network (CNN) plays an important role in image processing. Currently, most CNN-based NR-IQA methods focus primarily on the global features of images while ignoring detail-rich local features and channel dependencies. In fact, there are subtle differences in detail between distorted and reference images, as well as differences in the contribution of different channels to IQA. Furthermore, multi-scale feature extraction can be used to fuse the detailed information from images with different resolutions, and the combination of global and local features is critical in extracting image features. As a result, in this paper, a multi-scale residual CNN with an attention mechanism (MsRCANet) is proposed for NR-IQA. Specifically, a multi-scale residual block is first used to extract features from distorted images. Then, the residual learning with active weighted mapping strategy and channel attention mechanism is used to further process image features to obtain more abundant information. Finally, the fusion strategy and full connection layer are used to evaluate image quality. The experimental results on four synthetic databases and three in-the-wild IQA databases, as well as cross-database validation results, show that the proposed method has good generalization ability and can be compared with the most advanced methods.
引用
收藏
页码:13449 / 13465
页数:17
相关论文
共 50 条
  • [41] Hierarchical multi-scale stereoscopic image quality assessment based on visual mechanism
    Yongli Chang
    Sumei Li
    Ping Zhao
    Signal, Image and Video Processing, 2022, 16 : 1177 - 1185
  • [42] Hierarchical multi-scale stereoscopic image quality assessment based on visual mechanism
    Chang, Yongli
    Li, Sumei
    Zhao, Ping
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (05) : 1177 - 1185
  • [43] Multi-Pooled Inception Features for No-Reference Image Quality Assessment
    Varga, Domonkos
    APPLIED SCIENCES-BASEL, 2020, 10 (06):
  • [44] Multi-scale network with attention mechanism for underwater image enhancement
    Tao, Ye
    Tang, Jinhui
    Zhao, Xinwei
    Zhou, Chen
    Wang, Chong
    Zhao, Zhonglei
    NEUROCOMPUTING, 2024, 595
  • [45] An image response framework for no-reference image quality assessment
    Sun, Tongfeng
    Ding, Shifei
    Xu, Xinzheng
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 70 : 764 - 776
  • [46] No-Reference Image Quality Assessment for Facial Images
    Bhattacharjee, Debalina
    Prakash, Surya
    Gupta, Phalguni
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2012, 6839 : 594 - 601
  • [47] No-Reference Image Quality Assessment Based on HVS
    Fu, Yan
    Wang, Shengchun
    2016 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C), 2016, : 1093 - 1096
  • [48] No-reference visual quality assessment for image inpainting
    Voronin, V. V.
    Frantc, V. A.
    Marchuk, V. I.
    Sherstobitov, A. I.
    Egiazarian, K.
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS XIII, 2015, 9399
  • [49] A No-Reference Image Quality Comprehensive Assessment Method
    Fan, Yuan-Yuan
    Sang, Ying-Jun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [50] No-Reference Quality Assessment for Image Sharpness and Noise
    Tang, Lijuan
    Min, Xiongkuo
    Jakhetiya, Vinit
    Gu, Ke
    Zhang, Xinfeng
    Yang, Shuai
    2016 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2016,