An image response framework for no-reference image quality assessment

被引:2
|
作者
Sun, Tongfeng [1 ]
Ding, Shifei [1 ]
Xu, Xinzheng [1 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
No-reference image quality; Multi-scale preprocessing; Image input; Image object response; BLUR;
D O I
10.1016/j.compeleceng.2017.12.019
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an image response framework for no-reference image quality assessment (NR IQA). The framework is an image quality feature extension framework, extending existing image quality features to new NR image quality features. In the framework, a test image is transformed into a number of sub-images through multi-scale preprocessing. The sub-images are taken as image objects, and each object is exerted with multiple local convolution operations as image inputs. Object responses are extracted from the objects under the inputs based on existing image quality features. All the responses compose a global image response feature vector and are mapped to a quality index. Object responses are the NR extensions of the existing image quality features, which signifies the extensions of IQA approaches. Experiments show that the framework can extend full-reference IQA and reduced-reference IQA approaches to NR IQA approaches, and extend NR IQA approaches to new higher-performance NR IQA approaches. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:764 / 776
页数:13
相关论文
共 50 条
  • [1] A No-Reference Image Quality Assessment
    Kemalkar, Aniket K.
    Bairagi, Vinayak K.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN COMPUTING, COMMUNICATION AND NANOTECHNOLOGY (ICE-CCN'13), 2013, : 462 - 465
  • [2] Deep Ordinal Regression Framework for No-Reference Image Quality Assessment
    Wang, Huasheng
    Tu, Yulin
    Liu, Xiaochang
    Tan, Hongchen
    Liu, Hantao
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 428 - 432
  • [3] A Non-Parametric Framework for No-Reference Image Quality Assessment
    Manap, Redzuan Abdul
    Frangi, Alejandro F.
    Shao, Ling
    [J]. 2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 562 - 566
  • [4] Unsupervised Feature Learning Framework for No-reference Image Quality Assessment
    Ye, Peng
    Kumar, Jayant
    Kang, Le
    Doermann, David
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1098 - 1105
  • [5] No-Reference Stereoscopic Image Quality Assessment
    Akhter, Roushain
    Sazzad, Z. M. Parvez
    Horita, Y.
    Baltes, J.
    [J]. STEREOSCOPIC DISPLAYS AND APPLICATIONS XXI, 2010, 7524
  • [6] No-reference Image Denoising Quality Assessment
    Lu, Si
    [J]. ADVANCES IN COMPUTER VISION, CVC, VOL 1, 2020, 943 : 416 - 433
  • [7] Automatic no-reference image quality assessment
    Li, Hongjun
    Hu, Wei
    Xu, Zi-neng
    [J]. SPRINGERPLUS, 2016, 5
  • [8] No-Reference Fingerprint Image Quality Assessment
    Tiwari, Kamlesh
    Gupta, Phalguni
    [J]. INTELLIGENT COMPUTING METHODOLOGIES, 2014, 8589 : 846 - 854
  • [9] No-reference image quality assessment based on gradient histogram response
    Sun, Tongfeng
    Ding, Shifei
    Chen, Wei
    Xu, Xinzheng
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2016, 54 : 330 - 344
  • [10] No-Reference Image Quality Assessment for Image Auto-Denoising
    Xiangfei Kong
    Qingxiong Yang
    [J]. International Journal of Computer Vision, 2018, 126 : 537 - 549