A No-Reference Image Quality Assessment

被引:0
|
作者
Kemalkar, Aniket K. [1 ]
Bairagi, Vinayak K. [1 ]
机构
[1] Sinhgad Acad Engn, Dept E&TC, Pune, Maharashtra, India
关键词
Blur detection; human vision system; no-reference; objective; sharpness metric; JPEG2000; BLUR;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a no-reference image quality assessment, targeted towards blur distortions based on the study of human blur perception for varying contrast values. A probabilistic framework is developed based on the sensitivity of human blur perception at different contrasts. Utilizing this framework, the probability of detecting blur at each edge in an image is estimated. The blur perception information at each edge is then pooled over the entire image to obtain a final quality score by evaluating the cumulative probability of blur detection. Proposed metric is able to predict relative amount of blurriness in images. Higher metric value represent less blurred image. Results are provided to illustrate the performance of proposed metric. Performance of proposed metric is compared with existing no reference image quality metric for various publically available image databases.
引用
收藏
页码:462 / 465
页数:4
相关论文
共 50 条
  • [1] No-Reference Stereoscopic Image Quality Assessment
    Akhter, Roushain
    Sazzad, Z. M. Parvez
    Horita, Y.
    Baltes, J.
    [J]. STEREOSCOPIC DISPLAYS AND APPLICATIONS XXI, 2010, 7524
  • [2] No-reference Image Denoising Quality Assessment
    Lu, Si
    [J]. ADVANCES IN COMPUTER VISION, CVC, VOL 1, 2020, 943 : 416 - 433
  • [3] Automatic no-reference image quality assessment
    Li, Hongjun
    Hu, Wei
    Xu, Zi-neng
    [J]. SPRINGERPLUS, 2016, 5
  • [4] No-Reference Fingerprint Image Quality Assessment
    Tiwari, Kamlesh
    Gupta, Phalguni
    [J]. INTELLIGENT COMPUTING METHODOLOGIES, 2014, 8589 : 846 - 854
  • [5] An image response framework for no-reference image quality assessment
    Sun, Tongfeng
    Ding, Shifei
    Xu, Xinzheng
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2018, 70 : 764 - 776
  • [6] No-Reference Image Quality Assessment Based on HVS
    Fu, Yan
    Wang, Shengchun
    [J]. 2016 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C), 2016, : 1093 - 1096
  • [7] No-Reference Image Quality Assessment for Facial Images
    Bhattacharjee, Debalina
    Prakash, Surya
    Gupta, Phalguni
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2012, 6839 : 594 - 601
  • [8] No-Reference Quality Assessment for Image Sharpness and Noise
    Tang, Lijuan
    Min, Xiongkuo
    Jakhetiya, Vinit
    Gu, Ke
    Zhang, Xinfeng
    Yang, Shuai
    [J]. 2016 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2016,
  • [9] The Effect of Uncertainty on No-Reference Image Quality Assessment
    Raei, Mohammadreza
    Mansouri, Azadeh
    [J]. PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 223 - 227
  • [10] NO-REFERENCE IMAGE QUALITY ASSESSMENT BASED ON FILTERING
    Lu, Fang-Fang
    Lu, Lu
    Wang, Zhen
    [J]. MATERIAL ENGINEERING AND MECHANICAL ENGINEERING (MEME2015), 2016, : 929 - 937