Enumeration of paths, compositions of integers, and Fibonacci numbers

被引:0
|
作者
Kimberling, C [1 ]
机构
[1] Univ Evansville, Dept Math, Evansville, IN 47722 USA
来源
FIBONACCI QUARTERLY | 2001年 / 39卷 / 05期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:430 / 435
页数:6
相关论文
共 50 条
  • [31] Monochromatic paths for the integers
    Guerreiro, Joao
    Ruzsa, Imre Z.
    Silva, Manuel
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 58 : 283 - 288
  • [32] δ-FIBONACCI NUMBERS
    Witula, Roman
    Slota, Damian
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2009, 3 (02) : 310 - 329
  • [33] Fibonacci numbers
    Fredric T. Howard
    The Mathematical Intelligencer, 2004, 26 (1) : 65 - 65
  • [34] FIBONACCI NUMBERS
    DEALMEIDAAZEVEDO, JC
    FIBONACCI QUARTERLY, 1979, 17 (02): : 162 - 165
  • [35] Compositions and Fibonacci Identities
    Gessel, Ira M.
    Li, Ji
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (04)
  • [36] On representations of positive integers in the Fibonacci base
    Edson, M
    Zamboni, LQ
    THEORETICAL COMPUTER SCIENCE, 2004, 326 (1-3) : 241 - 260
  • [37] Integers with a maximal number of Fibonacci representations
    Kocábová, P
    Masáková, Z
    Pelantová, E
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2005, 39 (02): : 343 - 358
  • [38] An enumeration algorithm for all integers nonrepresentable by some positive integers
    Matsubara, Shunichi
    INFORMATION PROCESSING LETTERS, 2015, 115 (02) : 280 - 284
  • [39] COMPLEX FIBONACCI NUMBERS AND FIBONACCI QUATERNIONS
    HORADAM, AF
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (03): : 289 - &
  • [40] Euler numbers and diametral paths in Fibonacci cubes, Lucas cubes and alternate Lucas cubes
    Egecioglu, Omer
    Saygi, Elif
    Saygi, Zulfukar
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (03)