Noise-Resilient Ensemble Learning Using Evidence Accumulation

被引:0
|
作者
Candel, Gaelle [1 ,2 ]
Naccache, David [1 ]
机构
[1] PSL Univ, CNRS, Dept Informat ENS ENS, Paris, France
[2] Wordline TSS Labs, Paris, France
关键词
Classification; Distributed systems; Ensemble learning; Evidence accumulation clustering; Label corruption;
D O I
10.1007/978-3-030-96040-7_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble Learning methods combine multiple algorithms performing the same task to build a group with superior quality. These systems are well adapted to the distributed setup, where each peer or machine of the network hosts one algorithm and communicate its results to its peers. Ensemble learning methods are naturally resilient to the absence of several peers thanks to the ensemble redundancy. However, the network can be corrupted, altering the prediction accuracy of a peer, which has a deleterious effect on the ensemble quality. In this paper, we propose a noise-resilient ensemble classification method, which helps to improve accuracy and correct random errors. The approach is inspired by Evidence Accumulation Clustering, adapted to classification ensembles. We compared it to the naive voter model over four multi-class datasets. Our model showed a greater resilience, allowing us to recover prediction under a very high noise level. In addition as the method is based on the evidence accumulation clustering, our method is highly flexible as it can combines classifiers with different label definitions.
引用
收藏
页码:374 / 388
页数:15
相关论文
共 50 条
  • [41] Exploiting Multilabel Information for Noise-Resilient Feature Selection
    Jian, Ling
    Li, Jundong
    Liu, Huan
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2018, 9 (05)
  • [42] Noise-resilient edge modes on a chain of superconducting qubits
    Mi, X.
    Sonner, M.
    Niu, M. Y.
    Lee, K. W.
    Foxen, B.
    Acharya, R.
    Aleiner, I.
    Andersen, T. I.
    Arute, F.
    Arya, K.
    Asfaw, A.
    Atalaya, J.
    Bardin, J. C.
    Basso, J.
    Bengtsson, A.
    Bortoli, G.
    Bourassa, A.
    Brill, L.
    Broughton, M.
    Buckley, B. B.
    Buell, D. A.
    Burkett, B.
    Bushnell, N.
    Chen, Z.
    Chiaro, B.
    Collins, R.
    Conner, P.
    Courtney, W.
    Crook, A. L.
    Debroy, D. M.
    Demura, S.
    Dunsworth, A.
    Eppens, D.
    Erickson, C.
    Faoro, L.
    Farhi, E.
    Fatemi, R.
    Flores, L.
    Forati, E.
    Fowler, A. G.
    Giang, W.
    Gidney, C.
    Gilboa, D.
    Giustina, M.
    Dau, A. G.
    Gross, J. A.
    Habegger, S.
    Harrigan, M. P.
    Hoffmann, M.
    Hong, S.
    SCIENCE, 2022, 378 (6621) : 785 - 790
  • [43] Fuzzy-Based, Noise-Resilient, Explainable Algorithm for Regression
    Viana, Javier
    Cohen, Kelly
    EXPLAINABLE AI AND OTHER APPLICATIONS OF FUZZY TECHNIQUES, NAFIPS 2021, 2022, 258 : 461 - 472
  • [44] Sinusoidal activations support a noise-resilient neural circuit for navigation
    Aceituno, Pau Vilimelis
    Dall'Osto, Dominic
    Pisokas, Ioannis
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2024, 52 : S104 - S105
  • [45] Distributed Noise-Resilient Networked Synchrony of Active Distribution Systems
    Abhinav, Shankar
    Schizas, Ioannis D.
    Lewis, Frank L.
    Davoudi, Ali
    IEEE TRANSACTIONS ON SMART GRID, 2018, 9 (02) : 836 - 846
  • [46] Analysis on the inherent noise tolerance of feedforward network and one noise-resilient structure
    Lu, Wenhao
    Zhang, Zhengyuan
    Qin, Feng
    Zhang, Wenwen
    Lu, Yuncheng
    Liu, Yue
    Zheng, Yuanjin
    NEURAL NETWORKS, 2023, 165 : 786 - 798
  • [47] Multi-mode architectures for noise-resilient superconducting qubits
    Calzona, Alessio
    Carrega, Matteo
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2023, 36 (02):
  • [48] Noise-Resilient Edge Detection Algorithm for Brain MRI Images
    Agaian, Sos
    Almuntashri, Ali
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 3689 - 3692
  • [49] A Noise-Resilient Sparse Subspace Clustering Algorithm for Image Sequences
    Chen, Liping
    Guo, Gongde
    Wang, Hui
    2017 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2017, : 120 - 125
  • [50] Sinusoidal activations support a noise-resilient neural circuit for navigation
    Aceituno, Pau Vilimelis
    Dall'Osto, Dominic
    Pisokas, Ioannis
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2024, 52 : S104 - S105