Noise-Resilient Ensemble Learning Using Evidence Accumulation

被引:0
|
作者
Candel, Gaelle [1 ,2 ]
Naccache, David [1 ]
机构
[1] PSL Univ, CNRS, Dept Informat ENS ENS, Paris, France
[2] Wordline TSS Labs, Paris, France
关键词
Classification; Distributed systems; Ensemble learning; Evidence accumulation clustering; Label corruption;
D O I
10.1007/978-3-030-96040-7_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble Learning methods combine multiple algorithms performing the same task to build a group with superior quality. These systems are well adapted to the distributed setup, where each peer or machine of the network hosts one algorithm and communicate its results to its peers. Ensemble learning methods are naturally resilient to the absence of several peers thanks to the ensemble redundancy. However, the network can be corrupted, altering the prediction accuracy of a peer, which has a deleterious effect on the ensemble quality. In this paper, we propose a noise-resilient ensemble classification method, which helps to improve accuracy and correct random errors. The approach is inspired by Evidence Accumulation Clustering, adapted to classification ensembles. We compared it to the naive voter model over four multi-class datasets. Our model showed a greater resilience, allowing us to recover prediction under a very high noise level. In addition as the method is based on the evidence accumulation clustering, our method is highly flexible as it can combines classifiers with different label definitions.
引用
收藏
页码:374 / 388
页数:15
相关论文
共 50 条
  • [21] Noise-resilient quantum random access codes
    Karthik, H. S.
    Gomez, S.
    Quinteros, F. M.
    Shenoy, H. Akshata
    Pawlowski, M.
    Walborn, S. P.
    Lima, G.
    Gomez, E. S.
    PHYSICAL REVIEW A, 2025, 111 (03)
  • [22] Noise-Resilient Group Testing: Limitations and Constructions
    Cheraghchi, Mahdi
    FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 2009, 5699 : 62 - 73
  • [23] Noise-Resilient Federated Learning: Suppressing Noisy Labels in the Local Datasets of Participants
    Mishra, Rahul
    Gupta, Hari Prabhat
    Dutta, Tanima
    IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [24] Adaptive noise-resilient deep learning for image reconstruction in multimode fiber scattering
    Mohammadzadeh, Mohammad
    Tabakhi, Shima
    Sayeh, Mohammad R.
    APPLIED OPTICS, 2024, 63 (12) : 3003 - 3014
  • [25] Noise-resilient and high-speed deep learning with coherent silicon photonics
    Mourgias-Alexandris, G.
    Moralis-Pegios, M.
    Tsakyridis, A.
    Simos, S.
    Dabos, G.
    Totovic, A.
    Passalis, N.
    Kirtas, M.
    Rutirawut, T.
    Gardes, F. Y.
    Tefas, A.
    Pleros, N.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [26] Noise-resilient and high-speed deep learning with coherent silicon photonics
    G. Mourgias-Alexandris
    M. Moralis-Pegios
    A. Tsakyridis
    S. Simos
    G. Dabos
    A. Totovic
    N. Passalis
    M. Kirtas
    T. Rutirawut
    F. Y. Gardes
    A. Tefas
    N. Pleros
    Nature Communications, 13
  • [27] Silicon integrated photonic-electronic neuron for noise-resilient deep learning
    Roumpos, Ioannis
    de Marinis, Lorenzo
    Kovaios, Stefanos
    Kincaid, Peter Seigo
    Paolini, Emilio
    Tsakyridis, Apostolos
    Moralis-Pegios, Miltiadis
    Berciano, Mathias
    Ferraro, Filippo
    Bode, Dieter
    Srinivasan, Srinivasan Ashwyn
    Pantouvaki, Marianna
    Andriolli, Nicola
    Contestabile, Giampiero
    Pleros, Nikos
    Vyrsokinos, Konstantinos
    OPTICS EXPRESS, 2024, 32 (20): : 34264 - 34274
  • [28] IMPROVED NOISE-RESILIENT ISOLATED WORDS SPEECH RECOGNITION USING PIECEWISE DIFFERENTIATION
    Al-Anzi, Fawaz S.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (08)
  • [29] A Deep Learning-Based Noise-Resilient Keyword Spotting Engine for Embedded Platforms
    Abdelmoula, Ramzi
    Khamis, Alaa
    Karray, Fakhri
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2019), PT II, 2019, 11663 : 134 - 146
  • [30] Unsafe Events Detection in Smart Water Meter Infrastructure via Noise-Resilient Learning
    Oluyomi, Ayanfeoluwa
    Abedzadeh, Sahar
    Bhattacharjee, Shameek
    Das, Sajal K.
    PROCEEDINGS 15TH ACM/IEEE INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SYSTEMS, ICCPS 2024, 2024, : 259 - 270