Emergent singular solutions of nonlocal density-magnetization equations in one dimension

被引:5
|
作者
Holm, Darryl D. [1 ,2 ]
Naraigh, Lennon O. [1 ]
Tronci, Cesare [1 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA
[3] TERA Fdn Oncol Hadrontherapy, I-28100 Novara, Italy
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 03期
关键词
D O I
10.1103/PhysRevE.77.036211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the emergence of singular solutions in a nonlocal model for a magnetic system. We study a modified Gilbert-type equation for the magnetization vector and find that the evolution depends strongly on the length scales of the nonlocal effects. We pass to a coupled density-magnetization model and perform a linear stability analysis, noting the effect of the length scales of nonlocality on the system's stability properties. We carry out numerical simulations of the coupled system and find that singular solutions emerge from smooth initial data. The singular solutions represent a collection of interacting particles (clumpons). By restricting ourselves to the two-clumpon case, we are reduced to a two-dimensional dynamical system that is readily analyzed, and thus we classify the different clumpon interactions possible.
引用
收藏
页数:13
相关论文
共 50 条