EXISTENCE OF SOLUTIONS FOR ONE-DIMENSIONAL WAVE EQUATIONS WITH NONLOCAL CONDITIONS

被引:0
|
作者
Beilin, Sergei A. [1 ]
机构
[1] Samara State Univ, Dept Math, Samara 443011, Russia
关键词
Mixed problem; non-local conditions; wave equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study an initial and boundary-value problem with a nonlocal integral condition for a one-dimensional wave equation. We prove existence and uniqueness of classical solution and find its Fourier representation. The basis used consists of a system of eigenfunctions and adjoint functions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Laplace transform method for one-dimensional heat and wave equations with nonlocal conditions
    Bahuguna, D.
    Abbas, S.
    Shukla, R. K.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2010, 16 (M10): : 96 - 100
  • [2] Laplace transform method for one-dimensional heat and wave equations with nonlocal conditions
    Bahuguna, D.
    Abbas, S.
    Shukla, R.K.
    International Journal of Applied Mathematics and Statistics, 2010, 16 (M10): : 96 - 100
  • [3] ON THE DERIVATIVES OF THE SOLUTIONS OF ONE-DIMENSIONAL WAVE EQUATIONS
    HARTMAN, P
    WINTNER, A
    AMERICAN JOURNAL OF MATHEMATICS, 1950, 72 (01) : 148 - 156
  • [4] SOLVABILITY OF NONLOCAL PROBLEMS FOR SEMILINEAR ONE-DIMENSIONAL WAVE EQUATIONS
    Kharibegashvili, Sergo
    Midodashvili, Bidzina
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [5] On The Existence of Solutions to One-Dimensional Fourth-Order Equations
    S. Shokooh
    G. A. Afrouzi
    A. Hadjian
    Ukrainian Mathematical Journal, 2021, 72 : 1820 - 1836
  • [6] On The Existence of Solutions to One-Dimensional Fourth-Order Equations
    Shokooh, S.
    Afrouzi, G. A.
    Hadjian, A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2021, 72 (11) : 1820 - 1836
  • [7] Solitary wave solutions of the one-dimensional Boussinesq equations
    D. G. Natsis
    Numerical Algorithms, 2007, 44 : 281 - 289
  • [8] Solitary wave solutions of the one-dimensional Boussinesq equations
    Natsis, D. G.
    NUMERICAL ALGORITHMS, 2007, 44 (03) : 281 - 289
  • [9] The Method of Fundamental Solutions for One-Dimensional Wave Equations
    Gu, M. H.
    Young, D. L.
    Fan, C. M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2009, 11 (03): : 185 - 208
  • [10] On the existence of solutions to a one-dimensional degenerate nonlinear wave equation
    Hu, Yanbo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (01) : 157 - 176