Julia sets in iterative KAM methods for eigenvalue problems

被引:4
|
作者
Govin, M
Jauslin, HR
Cibils, M
机构
[1] Univ Bourgogne, CNRS, Fac Sci Mirande, Phys Lab, F-21011 Dijon, France
[2] Univ Lausanne, Inst Phys Theor, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1016/S0960-0779(97)00187-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present two iterative KAM methods for eigenvalue problems. We discuss their convergence properties for matrices of finite dimension when a perturbation parameter epsilon is varied. We observe different domains separated by Julia sets related to avoided crossings. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1835 / 1846
页数:12
相关论文
共 50 条
  • [31] ON UNIQUENESS SETS OF ADDITIVE EIGENVALUE PROBLEMS AND APPLICATIONS
    Mitake, Hiroyoshi
    Tran, Hung, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (11) : 4813 - 4822
  • [32] Symmetries of the Julia sets of Konig's methods for polynomials
    Liu, Gang
    Gao, Junyang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) : 356 - 366
  • [33] Julia sets converging to filled quadratic Julia sets
    Kozma, Robert T.
    Devaney, Robert L.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 171 - 184
  • [34] PRECONDITIONED GRADIENT-TYPE ITERATIVE METHODS IN A SUBSPACE FOR PARTIAL GENERALIZED SYMMETRICAL EIGENVALUE PROBLEMS
    KNYAZEV, AV
    SKOROKHODOV, AL
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) : 1226 - 1239
  • [35] JULIA SETS
    POPPE, C
    PHYSICA D, 1984, 11 (03): : 403 - 403
  • [36] Iterative algorithms for nonlinear ordinary differential eigenvalue problems
    Sun, W
    Liu, KM
    APPLIED NUMERICAL MATHEMATICS, 2001, 38 (03) : 361 - 376
  • [37] An Iterative Algorithm for Quaternion Eigenvalue Problems in Signal Processing
    Diao, Qiankun
    Liu, Jinlan
    Zhang, Naimin
    Xu, Dongpo
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2505 - 2509
  • [38] Block iterative eigensolvers for sequences of correlated eigenvalue problems
    Di Napoli, Edoardo
    Berljafa, Mario
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (11) : 2478 - 2488
  • [39] Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems
    Arbenz, P
    Geus, R
    APPLIED NUMERICAL MATHEMATICS, 2005, 54 (02) : 107 - 121
  • [40] Buried Julia Components and Julia Sets
    Wang, Youming
    Zhan, Guoping
    Liao, Liangwen
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (01)