Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems

被引:25
|
作者
Arbenz, P [1 ]
Geus, R [1 ]
机构
[1] ETH, Inst Computat Sci, CH-8092 Zurich, Switzerland
关键词
Maxwell equation; generalized eigenvalue problem; Jacobi-Davidson; LOBPCG; smoothed aggregation AMG preconditioner;
D O I
10.1016/j.apnum.2004.09.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate eigensolvers for computing a few of the smallest eigenvalues of a generalized eigenvalue problem resulting from the finite element discretization of the time independent Maxwell equation. Various multilevel preconditioners are employed to improve the convergence and memory consumption of the Jacobi-Davidson algorithm and of the locally optimal block preconditioned conjugate gradient (LOBPCG) method. We present numerical results of very large eigenvalue problems originating from the design of resonant cavities of particle accelerators. (c) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 121
页数:15
相关论文
共 50 条
  • [1] Block iterative eigensolvers for sequences of correlated eigenvalue problems
    Di Napoli, Edoardo
    Berljafa, Mario
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (11) : 2478 - 2488
  • [2] A TWO-LEVEL PRECONDITIONED HELMHOLTZ SUBSPACE ITERATIVE METHOD FOR MAXWELL EIGENVALUE PROBLEMS
    Liang, Qigang
    Xu, Xuejun
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (02) : 642 - 674
  • [3] Preconditioned iterative methods for a class of nonlinear eigenvalue problems
    Solov'ëv, SI
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 415 (01) : 210 - 229
  • [4] On a parallel multilevel preconditioned Maxwell eigensolver
    Arbenz, P
    Becka, M
    Geus, R
    Hetmaniuk, U
    Mengotti, T
    [J]. PARALLEL COMPUTING, 2006, 32 (02) : 157 - 165
  • [5] Preconditioned Iterative Methods for Eigenvalue Counts
    Vecharynski, Eugene
    Yang, Chao
    [J]. EIGENVALUE PROBLEMS: ALGORITHMS, SOFTWARE AND APPLICATIONS IN PETASCALE COMPUTING (EPASA 2015), 2017, 117 : 107 - 123
  • [6] A SURVEY OF MULTILEVEL PRECONDITIONED ITERATIVE METHODS
    AXELSSON, O
    VASSILEVSKI, PS
    [J]. BIT, 1989, 29 (04): : 769 - 793
  • [7] Towards a parallel multilevel preconditioned Maxwell eigensolver
    Arbenz, P
    Becka, M
    Geus, R
    Hetmaniuk, U
    [J]. APPLIED PARALLEL COMPUTING: STATE OF THE ART IN SCIENTIFIC COMPUTING, 2006, 3732 : 831 - 838
  • [8] PRECONDITIONED ITERATIVE METHODS FOR THE GENERALIZED EIGENVALUE PROBLEM
    EVANS, DJ
    [J]. LECTURE NOTES IN MATHEMATICS, 1983, 973 : 189 - 194
  • [9] Nonconforming Maxwell Eigensolvers
    Brenner, Susanne C.
    Li, Fengyan
    Sung, Li-yeng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) : 51 - 85
  • [10] Iterative validation of eigensolvers: A scheme for improving the reliability of Hermitian eigenvalue solvers
    McCombs, James R.
    Stathopoulos, Andreas
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (06): : 2337 - 2358