Paths between colourings of sparse graphs

被引:11
|
作者
Feghali, Carl [1 ]
机构
[1] Univ Bergen, Dept Informat, Bergen, Norway
关键词
D O I
10.1016/j.ejc.2018.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The reconfiguration graph R-k(G) of the k-colourings of a graph G has as vertex set the set of all possible k-colourings of G and two colourings are adjacent if they differ on the colour of exactly one vertex. We give a short proof of the following theorem of Bousquet and Perarnau (European Journal of Combinatorics, 2016). Let d and k be positive integers, k >= d + 1. For every e > O and every graph G with n vertices and maximum average degree d - epsilon, there exists a constant c = c(d, epsilon) such that R-k(G) has diameter O(n(c)). Our proof can be transformed into a simple polynomial time algorithm that finds a path between a given pair of colourings in R-k(G). (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:169 / 171
页数:3
相关论文
共 50 条
  • [31] Join colourings of chordal graphs
    Hell, Pavol
    Yen, Pei-Lan
    DISCRETE MATHEMATICS, 2015, 338 (12) : 2453 - 2461
  • [32] Canonical colourings in random graphs
    Kamcev, Nina
    Schacht, Mathias
    XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 5 - 12
  • [33] Distinguishing graphs by total colourings
    Kalinowski, Rafal
    Pilsniak, Monika
    Wozniak, Mariusz
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (01) : 79 - 89
  • [34] Constrained colourings of random graphs
    Collares, Mauricio
    Kohayakawa, Yoshiharu
    Moreira, Carlos Gustavo
    Mota, Guilherme Oliveira
    PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 368 - 375
  • [35] A note on interval colourings of graphs
    Axenovich, Maria
    Girao, Antonio
    Hollom, Lawrence
    Portier, Julien
    Powierski, Emil
    Savery, Michael
    Tamitegama, Youri
    Versteegen, Leo
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
  • [36] Clique colourings of geometric graphs
    McDiarmid, Colin
    Mitsche, Dieter
    Pralat, Pawel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [37] LIST-COLOURINGS OF GRAPHS
    BOLLOBAS, B
    HARRIS, AJ
    GRAPHS AND COMBINATORICS, 1985, 1 (02) : 115 - 127
  • [38] Total Thue colourings of graphs
    Schreyer J.
    Škrabul’áková E.
    European Journal of Mathematics, 2015, 1 (1) : 186 - 197
  • [39] List total colourings of graphs
    Juvan, M
    Mohar, B
    Skrekovski, R
    COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (02): : 181 - 188
  • [40] Wild edge colourings of graphs
    Dzamonja, N
    Komjath, P
    Morgan, C
    JOURNAL OF SYMBOLIC LOGIC, 2004, 69 (01) : 255 - 264