Paths between colourings of sparse graphs

被引:11
|
作者
Feghali, Carl [1 ]
机构
[1] Univ Bergen, Dept Informat, Bergen, Norway
关键词
D O I
10.1016/j.ejc.2018.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The reconfiguration graph R-k(G) of the k-colourings of a graph G has as vertex set the set of all possible k-colourings of G and two colourings are adjacent if they differ on the colour of exactly one vertex. We give a short proof of the following theorem of Bousquet and Perarnau (European Journal of Combinatorics, 2016). Let d and k be positive integers, k >= d + 1. For every e > O and every graph G with n vertices and maximum average degree d - epsilon, there exists a constant c = c(d, epsilon) such that R-k(G) has diameter O(n(c)). Our proof can be transformed into a simple polynomial time algorithm that finds a path between a given pair of colourings in R-k(G). (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:169 / 171
页数:3
相关论文
共 50 条
  • [21] HOMOGENEOUS COLOURINGS OF GRAPHS
    Madaras, Tomas
    Surimova, Maria
    MATHEMATICA BOHEMICA, 2023, 148 (01): : 105 - 115
  • [22] Nonrepetitive List Colourings of Paths
    Grytczuk, Jaroslaw
    Przybylo, Jakub
    Zhu, Xuding
    RANDOM STRUCTURES & ALGORITHMS, 2011, 38 (1-2) : 162 - 173
  • [23] On defected colourings of graphs
    Bing Yao
    Zhong-fu Zhang
    Jian-fang Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 777 - 786
  • [24] Weight of 3-paths in sparse plane graphs
    Aksenov, V. A.
    Borodin, O. V.
    Ivanova, A. O.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (03):
  • [25] Tight Hardness for Shortest Cycles and Paths in Sparse Graphs
    Lincoln, Andrea
    Williams, Virginia Vassilevska
    Williams, Ryan
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1236 - 1252
  • [26] Monotone paths in edge-ordered sparse graphs
    Roditty, Y
    Shoham, B
    Yuster, R
    DISCRETE MATHEMATICS, 2001, 226 (1-3) : 411 - 417
  • [27] A remarkable connection between k-permutations and colourings of graphs
    Gionfriddo, Mario
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2011, 14 (01) : 95 - 104
  • [28] On injective colourings of chordal graphs
    Hell, Pavol
    Raspaud, Andre
    Stacho, Juraj
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 520 - +
  • [29] List colourings of planar graphs
    Institut für Mathematik, TU Ilmenau, 6300 Ilmenau, Germany
    Discrete Math, 2006, 10-11 (1076-1079):
  • [30] A NOTE ON RADIO ANTIPODAL COLOURINGS OF PATHS
    Khennoufa, Riadh
    Togni, Olivier
    MATHEMATICA BOHEMICA, 2005, 130 (03): : 277 - 282