Wavelet estimation of the diffusion coefficient in time dependent diffusion models

被引:8
|
作者
Chen, Ping [1 ]
Wang, Jin-de
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2007年 / 50卷 / 11期
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
wavelet estimation; time-dependent diffusion coefficient; linear growth condition; strong consistency;
D O I
10.1007/s11425-007-0096-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The estimation problem for diffusion coefficients in diffusion processes has been studied in many papers, where the diffusion coefficient function is assumed to be a 1-dimensional bounded Lipschitzian function of the state or the time only. There is no previous work for the nonparametric estimation of time-dependent diffusion models where the diffusion coefficient depends on both the state and the time. This paper introduces and studies a wavelet estimation of the time-dependent diffusion coefficient under a more general assumption that the diffusion coefficient is a linear growth Lipschitz function. Using the properties of martingale, we translate the problems in diffusion into the nonparametric regression setting and give the L-r convergence rate. A strong consistency of the estimate is established. With this result one can estimate the time-dependent diffusion coefficient using the same structure of the wavelet estimators under any equivalent probability measure. For example, in finance, the wavelet estimator is strongly consistent under the market probability measure as well as the risk neutral probability measure.
引用
收藏
页码:1597 / 1610
页数:14
相关论文
共 50 条
  • [31] Chloride Diffusion Prediction in Concrete through Mathematical Models Based on Time-Dependent Diffusion Coefficient and Surface Chloride Concentration
    Xiong, Qing Xiang
    Liu, Qing Feng
    Zhang, Xi Jin
    Chen, Chuan
    [J]. JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2022, 34 (11)
  • [32] DETERMINATION OF TIME DEPENDENT DIFFUSION COEFFICIENT IN TIME FRACTIONAL DIFFUSION EQUATIONS BY FRACTIONAL SCALING TRANSFORMATIONS METHOD
    Bayrak, Mine Aylin
    Demir, Ali
    [J]. BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (04): : 303 - 319
  • [33] Non parametric estimation of the diffusion coefficient of a diffusion process
    Soulier, P
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 1998, 16 (01) : 185 - 200
  • [34] SCALING OF THE TIME-DEPENDENT SELF-DIFFUSION COEFFICIENT
    ESPANOL, P
    ZUNIGA, I
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1995, 9 (4-5): : 469 - 494
  • [35] Determination of the reaction coefficient in a time dependent nonlocal diffusion process
    Ding, Ming-Hui
    Zheng, Guang-Hui
    [J]. INVERSE PROBLEMS, 2021, 37 (02)
  • [36] A uniqueness result for the identification of a time-dependent diffusion coefficient
    Fraguela, A.
    Infante, J. A.
    Ramos, A. M.
    Rey, J. M.
    [J]. INVERSE PROBLEMS, 2013, 29 (12)
  • [37] AN UNDETERMINED TIME-DEPENDENT COEFFICIENT IN A FRACTIONAL DIFFUSION EQUATION
    Zhang, Zhidong
    [J]. INVERSE PROBLEMS AND IMAGING, 2017, 11 (05) : 875 - 900
  • [38] Time Dependent Chloride Diffusion Coefficient in Concrete in Cold Regions
    Chen, Sijia
    Song, Xiaobing
    Liu, Xila
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MATERIALS, ENVIRONMENTAL AND BIOLOGICAL ENGINEERING, 2015, 10 : 654 - 659
  • [39] Solutions for a fractional nonlinear diffusion equation: Spatial time dependent diffusion coefficient and external forces
    Lenzi, EK
    Mendes, RS
    Fa, KS
    da Silva, LR
    Lucena, LS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (09) : 3444 - 3452
  • [40] DIFFUSION-COEFFICIENT OF OXYGEN DETERMINED IN MILLIPORE FILTERS BY ANALYSIS OF TIME-DEPENDENT DIFFUSION
    VANDIJK, A
    HOOFD, L
    TUREK, Z
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1994, 479P : P101 - P101