A uniqueness result for the identification of a time-dependent diffusion coefficient

被引:6
|
作者
Fraguela, A. [1 ]
Infante, J. A. [2 ,3 ]
Ramos, A. M. [2 ,3 ]
Rey, J. M. [2 ,3 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Puebla, Mexico
[2] Univ Complutense Madrid, Dept Matemat Aplicada, Madrid, Spain
[3] Univ Complutense Madrid, Inst Matemat Interdisciplinar, Madrid, Spain
关键词
HIGH-PRESSURE PROCESSES; LEADING COEFFICIENT; INVERSE PROBLEM;
D O I
10.1088/0266-5611/29/12/125009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the problem of determining the time-dependent thermal diffusivity coefficient of a medium, when the evolution of the temperature in a part of it is known. Such situations arise in the context of food technology, when thermal processes at high pressures are used for extending the shelf life of the food, in order to preserve its nutritional and organoleptic properties (Infante et al 2009 On the Modelling and Simulation of High Pressure Processes and Inactivation of Enzymes in Food Engineering pp 2203-29 and Otero et al 2007 J. Food Eng. 78 1463-70). The phenomenon is modeled by the heat equation involving a term which depends on the source temperature and pressure increase, and appropriate initial and boundary conditions. We study the inverse problem of determining time-dependent thermal diffusivities k, when some temperature measurements at the border and inside the medium are known. We prove the uniqueness of the inverse problem solution under suitable a priori assumptions on regularity, size and growth of k.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Uniqueness result for a fractional diffusion coefficient identification problem
    Jday, Fadhel
    Mdimagh, Ridha
    [J]. BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)
  • [2] Uniqueness result for a fractional diffusion coefficient identification problem
    Fadhel Jday
    Ridha Mdimagh
    [J]. Boundary Value Problems, 2019
  • [3] FRACTIONAL DIFFUSION WITH TIME-DEPENDENT DIFFUSION COEFFICIENT
    Costa, F. S.
    De Oliveira, E. Capelas
    Plata, Adrian R. G.
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2021, 87 (01) : 59 - 79
  • [4] Identification of time-dependent convection coefficient in a time-fractional diffusion equation
    Sun, Liangliang
    Yan, Xiongbin
    Wei, Ting
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 346 : 505 - 517
  • [5] Time-dependent diffusion coefficient as a probe of geometry
    Sen, PN
    [J]. CONCEPTS IN MAGNETIC RESONANCE PART A, 2004, 23A (01) : 1 - 21
  • [6] A Transformation Method for Numerical Identification of the Time-Dependent Diffusion Coefficient in Parabolic Equations
    Kandilarov, J.
    Vulkov, L.
    [J]. PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 2172
  • [7] Time-dependent neutron diffusion coefficient for the effective diffusion equation
    Aguilar-Madera, Carlos G.
    Espinosa-Paredes, Gilberto
    Molina-Espinosa, Lazar
    [J]. PROGRESS IN NUCLEAR ENERGY, 2019, 112 : 20 - 33
  • [8] SCALING OF THE TIME-DEPENDENT SELF-DIFFUSION COEFFICIENT
    ESPANOL, P
    ZUNIGA, I
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1995, 9 (4-5): : 469 - 494
  • [9] AN UNDETERMINED TIME-DEPENDENT COEFFICIENT IN A FRACTIONAL DIFFUSION EQUATION
    Zhang, Zhidong
    [J]. INVERSE PROBLEMS AND IMAGING, 2017, 11 (05) : 875 - 900
  • [10] Grain-boundary diffusion in nanocrystals with a time-dependent diffusion coefficient
    A. A. Nazarov
    [J]. Physics of the Solid State, 2003, 45 : 1166 - 1169