Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing

被引:134
|
作者
Cho, Jongweon [1 ]
Gao, Li [1 ]
Tian, Jifa [2 ,3 ]
Cao, Helin [2 ,3 ]
Wu, Wei [4 ,5 ]
Yu, Qingkai [5 ]
Yitamben, Esmeralda N. [1 ]
Fisher, Brandon [1 ]
Guest, Jeffrey R. [1 ]
Chen, Yong P. [2 ,3 ]
Guisinger, Nathan P. [1 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[2] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Univ Houston, Ctr Adv Mat, Houston, TX 77204 USA
[5] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
graphene; chemical vapor deposition; Cu foil; scanning tunneling microscopy; Moire pattern; corrosion; surface oxide; GRAPHITE; FILMS; PHASE;
D O I
10.1021/nn103338g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have investigated the effects of thermal annealing on ex-situ chemically vapor deposited submonolayer graphene islands on polycrystalline Cu foil at the atomic-scale using ultrahigh vacuum scanning tunneling microscopy. Low-temperature annealed graphene islands on Cu foil (at similar to 430 degrees C) exhibit predominantly striped Moire patterns, indicating a relatively weak interaction between graphene and the underlying polycrystalline Cu foil. Rapid high-temperature annealing of the simple (at 700-800 degrees C) gives rise to the removal of Cu oxide and the recovery of crystallographic features of the copper that surrounds the intact graphene. These experimental observations of continuous crystalline features between the underlying copper (beneath the graphene islands). and the surrounding exposed copper areas revealed by high-temperature annealing demonstrates the impenetrable nature of graphene and its potential application as a protective layer against corrosion.
引用
收藏
页码:3607 / 3613
页数:7
相关论文
共 50 条
  • [41] Doping Effects and Grain Boundaries in Thermal CVD Graphene on Recrystallized Cu Foil
    Cermak, Jan
    Yamada, Takatoshi
    Ganzerova, Kristina
    Rezek, Bohuslav
    ADVANCED MATERIALS INTERFACES, 2016, 3 (16):
  • [42] Atomic-scale processes in Cu corrosion and corrosion inhibition
    Magnussen, OM
    Behm, RJ
    MRS BULLETIN, 1999, 24 (07) : 16 - 23
  • [43] Atomic-Scale Calculation of the Energy for the Cu/Ni Interface
    Zhang, Jian-Min
    Xin, Hong
    Zhang, Yan
    Xu, Ke-Wei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (28): : 12272 - 12276
  • [44] Atomic-scale nanowires on Si(001): Cu on Bi
    Rodriguez-Prieto, Alvaro
    Bowler, David R.
    PHYSICAL REVIEW B, 2010, 82 (04):
  • [45] Atomic-Scale Processes in Cu Corrosion and Corrosion Inhibition
    O. M. Magnussen
    R. J. Behm
    MRS Bulletin, 1999, 24 : 16 - 23
  • [46] Atomic-scale investigation of nuclear quantum effects of surface water: Experiments and theory
    Guo, Jing
    Li, Xin-Zheng
    Peng, Jinbo
    Wang, En-Ge
    Jiang, Ying
    PROGRESS IN SURFACE SCIENCE, 2017, 92 (04) : 203 - 239
  • [47] Atomic-Scale Investigation of Highly Stable Pt Clusters Synthesized on a Graphene Support for Catalytic Applications
    Cho, EunKyung
    Yitamben, Esmeralda N.
    Iski, Erin V.
    Guisinger, Nathan P.
    Kuech, T. F.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (49): : 26066 - 26071
  • [48] Atomic-Scale Faceting in CoPt Nanoparticles Epitaxially Grown on NaCl
    Pierron-Bohnes, Veronique
    Florea, Ileana
    Ersen, Ovidiu
    Ulhaq-Bouillet, Corinne
    Goyhenex, Christine
    Braidy, Nadi
    Ricolleau, Christian
    Le Bouar, Yann
    Alloyeau, Damien
    CRYSTAL GROWTH & DESIGN, 2014, 14 (05) : 2201 - 2208
  • [49] Atomic-scale investigation into precipitated phase thickening in Al-Si-Mg-Cu alloy
    Dong, Liang
    Chu, Shufen
    Hu, Bin
    Zeng, Xiaoqin
    Chen, Bin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 766 : 973 - 978
  • [50] Technetium Incorporation into Goethite (α-FeOOH): An Atomic-Scale Investigation
    Smith, Frances N.
    Taylor, Christopher D.
    Um, Wooyong
    Kruger, Albert A.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (22) : 13699 - 13707