New C*-algebras from substitution tilings

被引:0
|
作者
Goncalves, Daniel [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, Brazil
关键词
C*-algebras; tilings; substitution tilings; operator algebras;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a tiling with finite local complexity and a finite number of patterns up to translation, we associate a C*-algebra to it. We show that this C* -algebra is a recursive subhomogeneous algebra and characterize its ideals. In the case of a substitution tiling, that also has primitivity and recognizability, we use the construction mentioned above, on each of the inflated tilings, to obtain a inductive limit C*-algebra that encodes the dynamics of the inflation map. We show that this C* -algebra is simple.
引用
收藏
页码:391 / 407
页数:17
相关论文
共 50 条
  • [21] Operators, Algebras and Their Invariants for Aperiodic Tilings
    Kellendonk, Johannes
    SUBSTITUTION AND TILING DYNAMICS: INTRODUCTION TO SELF-INDUCING STRUCTURES, 2020, 2273 : 193 - 225
  • [22] RANDOM SUBSTITUTION TILINGS AND DEVIATION PHENOMENA
    Schmieding, Scott
    Trevino, Rodrigo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (08) : 3869 - 3902
  • [23] A primer of substitution tilings of the Euclidean plane
    Frank, Natalie Priebe
    EXPOSITIONES MATHEMATICAE, 2008, 26 (04) : 295 - 326
  • [24] Substitution tilings with statistical circular symmetry
    Frettloeh, Dirk
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (08) : 1881 - 1893
  • [25] Primitive substitution tilings with rotational symmetries
    Say-awen, April Lynne D.
    De las Penas, Ma Louise Antonette N.
    Frettloeh, Dirk
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : 388 - 398
  • [26] MLD Relations of Pisot Substitution Tilings
    Gaehler, Franz
    6TH INTERNATIONAL CONFERENCE ON APERIODIC CRYSTALS (APERIODIC'09), 2010, 226
  • [27] Substitution Tilings with Transcendental Inflation Factor
    Frettloeh, Dirk
    Garber, Alexey
    Manibo, Neil
    DISCRETE ANALYSIS, 2024,
  • [28] Determining quasicrystal structures on substitution tilings
    Akiyama, Shigeki
    Lee, Jeong-Yup
    PHILOSOPHICAL MAGAZINE, 2011, 91 (19-21) : 2709 - 2717
  • [29] Highly symmetric random substitution tilings
    Garcia Escudero, Juan
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2008, 223 (11-12): : 791 - 794
  • [30] Triangular dissections, aperiodic tilings, and Jones algebras
    Coquereaux, R
    ADVANCES IN APPLIED MATHEMATICS, 1995, 16 (04) : 402 - 424