Determining quasicrystal structures on substitution tilings

被引:3
|
作者
Akiyama, Shigeki [2 ]
Lee, Jeong-Yup [1 ]
机构
[1] KIAS, Seoul 130722, South Korea
[2] Niigata Univ, Fac Sci, Dept Math, Nishi Ku, Niigata 95021, Japan
关键词
quasicrystals; pure point diffraction; self-affine tilings; overlap coincidence; Meyer sets; algorithm; PURE POINT DIFFRACTION; SELF-SIMILAR TILINGS; MODEL SETS; SYSTEMS; SPECTRA;
D O I
10.1080/14786435.2010.513694
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quasicrystals are characterized by the diffraction patterns which consist of pure bright peaks. Substitution tilings are commonly used to obtain geometrical models for quasicrystals. We consider certain substitution tilings and show how to determine a quasicrystalline structure for the substitution tilings computationally. In order to do this, it is important to have the Meyer property on the substitution tilings. We use the recent result of Lee and Solomyak, which determines the Meyer property on the substitution tilings from the expansion maps.
引用
收藏
页码:2709 / 2717
页数:9
相关论文
共 50 条
  • [1] Heptagonal quasicrystal tilings
    GarciaEscudero, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (21): : 6877 - 6879
  • [2] Heptagonal quasicrystal tilings
    J Phys A Math Gen, 21 (6877):
  • [3] Tilings and coverings of quasicrystal surfaces
    McGrath, R
    Ledieu, J
    Cox, EJ
    Diehl, RD
    COVERINGS OF DISCRETE QUASIPERIODIC SETS: THEORY AND APPLICATIONS TO QUASICRYSTALS, 2003, 180 : 257 - 268
  • [4] Quasicrystal Tilings in Three Dimensions and Their Empires
    Hammock, Dugan
    Fang, Fang
    Irwin, Klee
    CRYSTALS, 2018, 8 (10):
  • [5] Simple and composite octagonal quasicrystal tilings
    Escudero, JG
    Garcia, JG
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (12) : 3511 - 3516
  • [6] FRACTAL TILINGS FROM SUBSTITUTION TILINGS
    Wang, Xinchang
    Ouyang, Peichang
    Chung, Kwokwai
    Zhan, Xiaogen
    Yi, Hua
    Tang, Xiaosong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
  • [7] Multiscale substitution tilings
    Smilansky, Yotam
    Solomon, Yaar
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 123 (06) : 517 - 564
  • [8] Dodecafoam and substitution tilings
    Goodman-Strauss, C
    COMPUTERS & GRAPHICS-UK, 1999, 23 (06): : 917 - 924
  • [9] Transverse Laplacians for Substitution Tilings
    Julien, Antoine
    Savinien, Jean
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 301 (02) : 285 - 318
  • [10] Transverse Laplacians for Substitution Tilings
    Antoine Julien
    Jean Savinien
    Communications in Mathematical Physics, 2011, 301 : 285 - 318