Multiscale substitution tilings

被引:7
|
作者
Smilansky, Yotam [1 ]
Solomon, Yaar [2 ]
机构
[1] Rutgers State Univ, Dept Math, Hill Ctr, Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Ben Gurion Univ Negev, Dept Math, POB 653, IL-8410501 Beer Sheva, Israel
基金
以色列科学基金会;
关键词
52C23; 52C22 (primary); 37B10; 37C30; 05B45; 05C21; 37A05 (secondary);
D O I
10.1112/plms.12404
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new general framework for constructing tilings of Euclidean space, which we call multiscale substitution tilings. These tilings are generated by substitution schemes on a finite set of prototiles, in which multiple distinct scaling constants are allowed. This is in contrast to the standard case of the well-studied substitution tilings which includes examples such as the Penrose and the pinwheel tilings. Under an additional irrationality assumption on the scaling constants, our construction defines a new class of tilings and tiling spaces, which are intrinsically different from those that arise in the standard setup. We study various structural, geometric, statistical, and dynamical aspects of these new objects and establish a wide variety of properties. Among our main results are explicit density formulas and the unique ergodicity of the associated tiling dynamical systems.
引用
收藏
页码:517 / 564
页数:48
相关论文
共 50 条
  • [1] Statistics and gap distributions in random Kakutani partitions and multiscale substitution tilings
    Smilansky, Yotam
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (02)
  • [2] FRACTAL TILINGS FROM SUBSTITUTION TILINGS
    Wang, Xinchang
    Ouyang, Peichang
    Chung, Kwokwai
    Zhan, Xiaogen
    Yi, Hua
    Tang, Xiaosong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
  • [3] Dodecafoam and substitution tilings
    Goodman-Strauss, C
    COMPUTERS & GRAPHICS-UK, 1999, 23 (06): : 917 - 924
  • [4] Transverse Laplacians for Substitution Tilings
    Julien, Antoine
    Savinien, Jean
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 301 (02) : 285 - 318
  • [5] Transverse Laplacians for Substitution Tilings
    Antoine Julien
    Jean Savinien
    Communications in Mathematical Physics, 2011, 301 : 285 - 318
  • [6] Fractal dual substitution tilings
    Frank, Natalie Priebe
    Webster, Samuel B. G.
    Whittaker, Michael F.
    JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (03) : 265 - 317
  • [7] Spectral cocycle for substitution tilings
    Solomyak, Boris
    Trevino, Rodrigo
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (06) : 1629 - 1672
  • [8] FUNCTIONS OF SUBSTITUTION TILINGS AS A JACOBIAN
    Solomon, Yaar
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (11) : 3853 - 3863
  • [9] Cyclotomic Aperiodic Substitution Tilings
    Pautze, Stefan
    SYMMETRY-BASEL, 2017, 9 (02):
  • [10] Matching rules and substitution tilings
    Goodman-Strauss, C
    ANNALS OF MATHEMATICS, 1998, 147 (01) : 181 - 223