FUNCTIONS OF SUBSTITUTION TILINGS AS A JACOBIAN

被引:0
|
作者
Solomon, Yaar [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
基金
以色列科学基金会;
关键词
SEPARATED NETS; EUCLIDEAN-SPACE; MAPS;
D O I
10.1090/S0002-9939-2013-11663-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A tiling tau of the Euclidean space gives rise to a function f(tau), which is constant 1/vertical bar T vertical bar on the interior of every tile T. In this paper we give a local condition to know when f(tau), which is defined by a primitive substitution tiling of the Euclidean space, can be realized as a Jacobian of a biLipschitz homeomorphism of R-d. As an example we show that this condition holds for any star-shaped substitution tiling of R-2. In particular, the result holds for any Penrose tiling.
引用
收藏
页码:3853 / 3863
页数:11
相关论文
共 50 条
  • [1] FRACTAL TILINGS FROM SUBSTITUTION TILINGS
    Wang, Xinchang
    Ouyang, Peichang
    Chung, Kwokwai
    Zhan, Xiaogen
    Yi, Hua
    Tang, Xiaosong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
  • [2] Multiscale substitution tilings
    Smilansky, Yotam
    Solomon, Yaar
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 123 (06) : 517 - 564
  • [3] Dodecafoam and substitution tilings
    Goodman-Strauss, C
    COMPUTERS & GRAPHICS-UK, 1999, 23 (06): : 917 - 924
  • [4] Transverse Laplacians for Substitution Tilings
    Julien, Antoine
    Savinien, Jean
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 301 (02) : 285 - 318
  • [5] Transverse Laplacians for Substitution Tilings
    Antoine Julien
    Jean Savinien
    Communications in Mathematical Physics, 2011, 301 : 285 - 318
  • [6] Fractal dual substitution tilings
    Frank, Natalie Priebe
    Webster, Samuel B. G.
    Whittaker, Michael F.
    JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (03) : 265 - 317
  • [7] Spectral cocycle for substitution tilings
    Solomyak, Boris
    Trevino, Rodrigo
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (06) : 1629 - 1672
  • [8] Cyclotomic Aperiodic Substitution Tilings
    Pautze, Stefan
    SYMMETRY-BASEL, 2017, 9 (02):
  • [9] Matching rules and substitution tilings
    Goodman-Strauss, C
    ANNALS OF MATHEMATICS, 1998, 147 (01) : 181 - 223
  • [10] Geometric realization for substitution tilings
    Barge, Marcy
    Gambaudo, Jean-Marc
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 457 - 482