FUNCTIONS OF SUBSTITUTION TILINGS AS A JACOBIAN

被引:0
|
作者
Solomon, Yaar [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
基金
以色列科学基金会;
关键词
SEPARATED NETS; EUCLIDEAN-SPACE; MAPS;
D O I
10.1090/S0002-9939-2013-11663-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A tiling tau of the Euclidean space gives rise to a function f(tau), which is constant 1/vertical bar T vertical bar on the interior of every tile T. In this paper we give a local condition to know when f(tau), which is defined by a primitive substitution tiling of the Euclidean space, can be realized as a Jacobian of a biLipschitz homeomorphism of R-d. As an example we show that this condition holds for any star-shaped substitution tiling of R-2. In particular, the result holds for any Penrose tiling.
引用
收藏
页码:3853 / 3863
页数:11
相关论文
共 50 条