New C*-algebras from substitution tilings

被引:0
|
作者
Goncalves, Daniel [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, Brazil
关键词
C*-algebras; tilings; substitution tilings; operator algebras;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a tiling with finite local complexity and a finite number of patterns up to translation, we associate a C*-algebra to it. We show that this C* -algebra is a recursive subhomogeneous algebra and characterize its ideals. In the case of a substitution tiling, that also has primitivity and recognizability, we use the construction mentioned above, on each of the inflated tilings, to obtain a inductive limit C*-algebra that encodes the dynamics of the inflation map. We show that this C* -algebra is simple.
引用
收藏
页码:391 / 407
页数:17
相关论文
共 50 条
  • [1] On the K-theory of the stable C*-algebras from substitution tilings
    Goncalves, Daniel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (04) : 998 - 1019
  • [2] Topological invariants for substitution tilings and their associated C*-algebras
    Anderson, JE
    Putnam, IF
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 : 509 - 537
  • [3] On the K-theory of C*-algebras associated to substitution tilings
    Goncalves, Daniel
    Ramirez-Solano, Maria
    DISSERTATIONES MATHEMATICAE, 2020, (551) : 5 - +
  • [4] The Ordered K-Theory of C/*-Algebras¶Associated with Substitution Tilings
    Ian F. Putnam
    Communications in Mathematical Physics, 2000, 214 : 593 - 605
  • [5] The ordered K-theory of C*-algebras associated with substitution tilings
    Putman, IF
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (03) : 593 - 605
  • [6] FRACTAL TILINGS FROM SUBSTITUTION TILINGS
    Wang, Xinchang
    Ouyang, Peichang
    Chung, Kwokwai
    Zhan, Xiaogen
    Yi, Hua
    Tang, Xiaosong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
  • [7] C*-algebras of Penrose hyperbolic tilings
    Oyono-Oyono, Herve
    Petite, Samuel
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) : 400 - 424
  • [8] C*-ALGEBRAS OF TILINGS WITH INFINITE ROTATIONAL SYMMETRY
    Whittaker, Michael F.
    JOURNAL OF OPERATOR THEORY, 2010, 64 (02) : 299 - 319
  • [9] Multiscale substitution tilings
    Smilansky, Yotam
    Solomon, Yaar
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 123 (06) : 517 - 564
  • [10] Dodecafoam and substitution tilings
    Goodman-Strauss, C
    COMPUTERS & GRAPHICS-UK, 1999, 23 (06): : 917 - 924