On the Obstacle Problem for a Naghdi Shell

被引:4
|
作者
Ben Belgacem, Faker [5 ]
Bernardi, Christine [1 ,2 ]
Blouza, Adel [3 ]
Taallah, Frekh [4 ]
机构
[1] CNRS, Lab Jacques Louis Lions, F-75252 Paris, France
[2] Univ Paris 06, F-75252 Paris, France
[3] Univ Rouen, Lab Math Raphael Salem, UMR 6085, CNRS, F-76801 St Etienne, Rouvray, France
[4] Univ Badji Mokhtar, Fac Sci, Dept Math, Annaba 23000, Algeria
[5] Univ Technol Compiegne, Ctr Rech Royallieu, F-60205 Compiegne, France
关键词
Naghdi shell model; Contact problem; Variational inequalities; VARIATIONAL-INEQUALITIES; EXISTENCE; MODEL; REGULARITY; UNIQUENESS;
D O I
10.1007/s10659-010-9269-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Starting with the Naghdi model for a shell in Cartesian coordinates, we derive a model for the contact of this shell with a rigid body. We also prove the well-posedness of the resulting system of variational inequalities.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] Two finite element approximations of Naghdi's shell model in Cartesian coordinates
    Blouza, Adel
    Hecht, Frederic
    Le Dret, Herve
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) : 636 - 654
  • [42] Inverse Neumann obstacle problem
    Couchman, LS
    Roy, DNG
    Warner, J
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1998, 104 (05): : 2615 - 2621
  • [43] FAST SOLUTION OF THE OBSTACLE PROBLEM
    MEDINA, MA
    GONZALEZ, RLV
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 79 (01) : 183 - 195
  • [44] Random homogenization of an obstacle problem
    Caffarelli, L. A.
    Mellet, A.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02): : 375 - 395
  • [45] Optimal obstacle control problem
    Li Zhu
    Xiu-hua Li
    Xing-ming Guo
    Applied Mathematics and Mechanics, 2008, 29 : 559 - 569
  • [46] THE OBSTACLE PROBLEM FOR AN ELASTOPLASTIC BODY
    REDDY, BD
    TOMARELLI, F
    APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 21 (01): : 89 - 110
  • [47] SMOOTH BIFURCATION FOR AN OBSTACLE PROBLEM
    Eisner, Jan
    Kucera, Milan
    Recke, Lutz
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2005, 18 (02) : 121 - 140
  • [48] On the time derivative in an obstacle problem
    Lindqvist, Peter
    REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (02) : 577 - 590
  • [49] PARABOLIC STOCHASTIC OBSTACLE PROBLEM
    RASCANU, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (01) : 71 - 83
  • [50] Control in obstacle pseudoplate problem
    Lovisek, Jan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2006, 86 (12): : 951 - 980