On the Obstacle Problem for a Naghdi Shell

被引:4
|
作者
Ben Belgacem, Faker [5 ]
Bernardi, Christine [1 ,2 ]
Blouza, Adel [3 ]
Taallah, Frekh [4 ]
机构
[1] CNRS, Lab Jacques Louis Lions, F-75252 Paris, France
[2] Univ Paris 06, F-75252 Paris, France
[3] Univ Rouen, Lab Math Raphael Salem, UMR 6085, CNRS, F-76801 St Etienne, Rouvray, France
[4] Univ Badji Mokhtar, Fac Sci, Dept Math, Annaba 23000, Algeria
[5] Univ Technol Compiegne, Ctr Rech Royallieu, F-60205 Compiegne, France
关键词
Naghdi shell model; Contact problem; Variational inequalities; VARIATIONAL-INEQUALITIES; EXISTENCE; MODEL; REGULARITY; UNIQUENESS;
D O I
10.1007/s10659-010-9269-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Starting with the Naghdi model for a shell in Cartesian coordinates, we derive a model for the contact of this shell with a rigid body. We also prove the well-posedness of the resulting system of variational inequalities.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] Advantages of the p-version of the FEM for a linear NAGHDI shell element
    Preusch, K
    Bruhns, OT
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S885 - S886
  • [32] Error analysis for a mixed DG method for folded Naghdi's shell
    Nicaise, Serge
    Merabet, Ismail
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (07) : 659 - 664
  • [33] A new linear Naghdi type shell model for shells with little regularity
    Tambaca, Josip
    Tutek, Zvonimir
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (23-24) : 10549 - 10562
  • [34] SENSITIVITY ANALYSIS OF SHALLOW SHELL WITH OBSTACLE
    RAO, M
    SOKOLOWSKI, J
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1991, 154 : 135 - 144
  • [35] Buckling of an elastic hemispherical shell with an obstacle
    Alberto Maria Bersani
    Ivan Giorgio
    Giovanna Tomassetti
    Continuum Mechanics and Thermodynamics, 2013, 25 : 443 - 467
  • [36] Buckling of an elastic hemispherical shell with an obstacle
    Bersani, Alberto Maria
    Giorgio, Ivan
    Tomassetti, Giovanna
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2013, 25 (2-4) : 443 - 467
  • [37] Characterizing compact coincidence sets in the thin obstacle problem and the obstacle problem for the fractional Laplacian
    Eberle, Simon
    Ros-Oton, Xavier
    Weiss, Georg S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211
  • [38] LEWY-STAMPACCHIA'S INEQUALITY FOR THE BILATERAL OBSTACLE PROBLEM AND THE QUADRATIC OBSTACLE PROBLEM
    Mokrane, Abdelhafid
    Murat, Francois
    MATEMATICHE, 2005, 60 (02): : 299 - 314
  • [39] The eigenvalue problem for solitary waves of the Green-Naghdi equations
    Li, YA
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 339 - 343
  • [40] A double obstacle problem in an optimal investment problem
    Kim, Takwon
    Lee, Ki-Ahm
    Park, Jinwan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 232