Pointwise Convergence Along Restricted Directions for the Fractional Schrodinger Equation

被引:7
|
作者
Shiraki, Shobu [1 ]
机构
[1] Saitama Univ, Grad Sch Sci & Engn, Dept Math, Saitama 3388570, Japan
关键词
Fractional schrodinger equation; Pointwise convergence; MAXIMAL-FUNCTION; REGULARITY; WAVE;
D O I
10.1007/s00041-020-09760-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the pointwise convergence problem for the solution of Schrodinger-type equations along directions determined by a given compact subset of the real line. This problem contains Carleson's problem as the simplest case and was studied in general by Cho et al. We extend their result from the case of the classical Schrodinger equation to a class of equations which includes the fractional Schrodinger equations. To achieve this, we significantly simplify their proof by completely avoiding a time localization argument.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Pointwise convergence for the elastic wave equation
    Cho, Chu-Hee
    Kim, Seongyeon
    Kwon, Yehyun
    Seo, Ihyeok
    ARCHIV DER MATHEMATIK, 2022, 119 (03) : 303 - 310
  • [22] Pointwise convergence for the elastic wave equation
    Chu-Hee Cho
    Seongyeon Kim
    Yehyun Kwon
    Ihyeok Seo
    Archiv der Mathematik, 2022, 119 : 303 - 310
  • [24] PROBABILISTIC POINTWISE CONVERGENCE PROBLEM OF SCHRODINGER EQUATIONS ON MANIFOLDS
    Wang, Junfang
    Yan, Wei
    Yan, Xiangqian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (08) : 3367 - 3378
  • [25] POINTWISE CONVERGENCE OF ERGODIC AVERAGES ALONG CUBES
    Assani, I.
    JOURNAL D ANALYSE MATHEMATIQUE, 2010, 110 : 241 - 269
  • [26] Pointwise convergence of ergodic averages along cubes
    I. Assani
    Journal d'Analyse Mathématique, 2010, 110 : 241 - 269
  • [27] Pointwise Convergence along non-tangential direction for the Schrödinger equation with Complex Time
    Jiye Yuan
    Tengfei Zhao
    Jiqiang Zheng
    Revista Matemática Complutense, 2021, 34 : 389 - 407
  • [28] Fractional Schrodinger equation; solvability and connection with classical Schrodinger equation
    Bezerra, Flank D. M.
    Carvalho, Alexandre N.
    Dlotko, Tomasz
    Nascimento, Marcelo J. D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 336 - 360
  • [29] Time fractional Schrodinger equation
    Naber, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (08) : 3339 - 3352
  • [30] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):