Mean curvature flow of pinched submanifolds of CPn
被引:4
|
作者:
Pipoli, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Joseph Fourier Grenoble I, Inst Fourier, CNRS, UMR 5582,UJF, F-38402 St Martin Dheres, FranceUniv Joseph Fourier Grenoble I, Inst Fourier, CNRS, UMR 5582,UJF, F-38402 St Martin Dheres, France
Pipoli, G.
[1
]
Sinestrari, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, ItalyUniv Joseph Fourier Grenoble I, Inst Fourier, CNRS, UMR 5582,UJF, F-38402 St Martin Dheres, France
Sinestrari, C.
[2
]
机构:
[1] Univ Joseph Fourier Grenoble I, Inst Fourier, CNRS, UMR 5582,UJF, F-38402 St Martin Dheres, France
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
CONTRACTING CONVEX HYPERSURFACES;
REAL HYPERSURFACES;
D O I:
10.4310/CAG.2017.v25.n4.a3
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider the evolution by mean curvature flow of a closed submanifold of the complex projective space. We show that, if the submanifold has small codimension and satisfies a suitable pinching condition on the second fundamental form, then the evolution has two possible behaviors: either the submanifold shrinks to a round point in finite time, or it converges smoothly to a totally geodesic limit in infinite time. The latter behavior is only possible if the dimension is even. These results generalize previous works by Huisken and Baker on the mean curvature flow of submanifolds of the sphere.