Mean curvature flow of pinched submanifolds of CPn

被引:4
|
作者
Pipoli, G. [1 ]
Sinestrari, C. [2 ]
机构
[1] Univ Joseph Fourier Grenoble I, Inst Fourier, CNRS, UMR 5582,UJF, F-38402 St Martin Dheres, France
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00133 Rome, Italy
关键词
CONTRACTING CONVEX HYPERSURFACES; REAL HYPERSURFACES;
D O I
10.4310/CAG.2017.v25.n4.a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the evolution by mean curvature flow of a closed submanifold of the complex projective space. We show that, if the submanifold has small codimension and satisfies a suitable pinching condition on the second fundamental form, then the evolution has two possible behaviors: either the submanifold shrinks to a round point in finite time, or it converges smoothly to a totally geodesic limit in infinite time. The latter behavior is only possible if the dimension is even. These results generalize previous works by Huisken and Baker on the mean curvature flow of submanifolds of the sphere.
引用
收藏
页码:799 / 846
页数:48
相关论文
共 50 条
  • [21] On the Mean Curvature Flow of Submanifolds in the Standard Gaussian Space
    Li, An-Min
    Li, Xingxiao
    Zhang, Di
    RESULTS IN MATHEMATICS, 2020, 75 (04)
  • [22] On the Mean Curvature Flow of Submanifolds in the Standard Gaussian Space
    An-Min Li
    Xingxiao Li
    Di Zhang
    Results in Mathematics, 2020, 75
  • [23] Translating Solitons of Mean Curvature Flow of Noncompact Submanifolds
    Guanghan Li
    Daping Tian
    Chuanxi Wu
    Mathematical Physics, Analysis and Geometry, 2011, 14 : 83 - 99
  • [24] Translating Solitons of Mean Curvature Flow of Noncompact Submanifolds
    Li, Guanghan
    Tian, Daping
    Wu, Chuanxi
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2011, 14 (01) : 83 - 99
  • [25] Ancient solutions to mean curvature flow for isoparametric submanifolds
    Xiaobo Liu
    Chuu-Lian Terng
    Mathematische Annalen, 2020, 378 : 289 - 315
  • [26] Ancient solutions to mean curvature flow for isoparametric submanifolds
    Liu, Xiaobo
    Terng, Chuu-Lian
    MATHEMATISCHE ANNALEN, 2020, 378 (1-2) : 289 - 315
  • [27] A sphere theorem for submanifolds in a manifold with pinched positive curvature
    Chang-Yu Xia
    Monatshefte für Mathematik, 1997, 124 : 365 - 368
  • [28] A sphere theorem for submanifolds in a manifold with pinched positive curvature
    Xia, CY
    MONATSHEFTE FUR MATHEMATIK, 1997, 124 (04): : 365 - 368
  • [29] Quadratically pinched hypersurfaces of the sphere via mean curvature flow with surgery
    Langford, Mat
    Huy The Nguyen
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
  • [30] Singularity models of pinched solutions of mean curvature flow in higher codimension
    Naff, Keaton
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (794): : 101 - 132