Fourier decay for homogeneous self-affine measures

被引:2
|
作者
Solomyak, Boris [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
Self-affine measure; Fourier decay; Erdos-Kahane method; SIMILAR SETS; BERNOULLI; FAMILY;
D O I
10.4171/JFG/119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for Lebesgue almost all d-tuples (theta(1), ..., theta(d)), with vertical bar theta(j)vertical bar > 1, any self-affine measure for a homogeneous non-degenerate iterated function system {Ax + a(j)}(j=1)(m) in R-d, where A(-1) is a diagonal matrix with the entries. (theta(1), ..., theta(d)), has power Fourier decay at infinity.
引用
收藏
页码:193 / 206
页数:14
相关论文
共 50 条
  • [31] Spectral self-affine measures with prime determinant
    Li, Jian-Lin
    MONATSHEFTE FUR MATHEMATIK, 2013, 169 (3-4): : 397 - 407
  • [32] The Assouad dimension of self-affine measures on sponges
    Fraser, Jonathan M.
    Kolossvary, Istvan
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (09) : 2974 - 2996
  • [33] THE DIMENSION OF PROJECTIONS OF SELF-AFFINE SETS AND MEASURES
    Falconer, Kenneth
    Kempton, Tom
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (01) : 473 - 486
  • [34] Spectral Property of Self-Affine Measures on Rn
    Wang, Zhiyong
    Liu, Jingcheng
    Su, Juan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (05)
  • [35] Spectrum of self-affine measures on the Sierpinski family
    M. Megala
    Srijanani Anurag Prasad
    Monatshefte für Mathematik, 2024, 204 : 157 - 169
  • [36] SELF-AFFINE MEASURES THAT ARE LP-IMPROVING
    Hare, Kathryn E.
    COLLOQUIUM MATHEMATICUM, 2015, 139 (02) : 229 - 243
  • [37] Multifractal formalism for self-affine measures with overlaps
    Qi-Rong Deng
    Sze-Man Ngai
    Archiv der Mathematik, 2009, 92 : 614 - 625
  • [38] Non-spectrality of self-affine measures
    Wang, Zhiyong
    Liu, Jingcheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (10) : 3723 - 3736
  • [39] Spectral self-affine measures on the planar Sierpinski family
    Li JianLin
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (08) : 1619 - 1628
  • [40] Spectral self-affine measures on the spatial Sierpinski gasket
    Li, Jian-Lin
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (02): : 293 - 322