INVESTIGATION OF THE K2 ALGORITHM IN LEARNING BAYESIAN NETWORK CLASSIFIERS

被引:35
|
作者
Lerner, Boaz [1 ]
Malka, Roy [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Ind Engn & Management, IL-84105 Beer Sheva, Israel
关键词
CLASSIFICATION;
D O I
10.1080/08839514.2011.529265
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We experimentally study the K2 algorithm in learning a Bayesian network (BN) classifier for image detection of cytogenetic abnormalities. Starting from an initial BN structure, the K2 algorithm searches the BN structure space and selects the structure maximizing the K2 metric. To improve the accuracy of the K2-based BN classifier, we investigate the K2 algorithm initial ordering, search procedure, and metric. We find that BN structures learned using random initial orderings, orderings based on expert knowledge, or a scatter criterion are comparable and lead to similar classification accuracies. Replacing the K2 search with hill-climbing search improves the accuracy as does the inclusion of hidden nodes in the BN structure. Also, we demonstrate that though the maximization of the K2 metric solicits structures providing improved inference, these structures contribute to only limited classification accuracy.
引用
收藏
页码:74 / 96
页数:23
相关论文
共 50 条
  • [41] Bandit-Based Structure Learning for Bayesian Network Classifiers
    Eghbali, Sepehr
    Ashtiani, Mohammad Hassan Zokaei
    Ahmadabadi, Majid Nili
    Araabi, Babak Nadjar
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 349 - 356
  • [42] Learning Bayesian network classifiers using ant colony optimization
    Salama, Khalid M.
    Freitas, Alex A.
    SWARM INTELLIGENCE, 2013, 7 (2-3) : 229 - 254
  • [43] Learning Bayesian Network Classifiers to Minimize Class Variable Parameters
    Sugahara, Shouta
    Kato, Koya
    Ueno, Maomi
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 18, 2024, : 20540 - 20549
  • [44] Efficient learning of Bayesian network classifiers - An extension to the TAN classifier
    Carvalho, Alexandra M.
    Oliveira, Arlindo L.
    Sagot, Marie-France
    AI 2007: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4830 : 16 - +
  • [45] Learning Bayesian network classifiers using ant colony optimization
    Khalid M. Salama
    Alex A. Freitas
    Swarm Intelligence, 2013, 7 : 229 - 254
  • [46] Inference and learning in multi-dimensional Bayesian network classifiers
    de Waal, Peter R.
    van der Gaag, Linda C.
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2007, 4724 : 501 - +
  • [47] Discretizing environmental data for learning Bayesian-network classifiers
    Ropero, R. F.
    Renooij, S.
    van der Gaag, L. C.
    ECOLOGICAL MODELLING, 2018, 368 : 391 - 403
  • [48] Learning Continuous Time Bayesian Network Classifiers Using MapReduce
    Villa, Simone
    Rossetti, Marco
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 62 (03): : 1 - 25
  • [49] Parameter Learning of Bayesian Network Classifiers Under Computational Constraints
    Tschiatschek, Sebastian
    Pernkopf, Franz
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT I, 2015, 9284 : 86 - 101
  • [50] Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers
    Pernkopf, Franz
    Bilmes, Jeff A.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 2323 - 2360