INVESTIGATION OF THE K2 ALGORITHM IN LEARNING BAYESIAN NETWORK CLASSIFIERS

被引:35
|
作者
Lerner, Boaz [1 ]
Malka, Roy [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Ind Engn & Management, IL-84105 Beer Sheva, Israel
关键词
CLASSIFICATION;
D O I
10.1080/08839514.2011.529265
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We experimentally study the K2 algorithm in learning a Bayesian network (BN) classifier for image detection of cytogenetic abnormalities. Starting from an initial BN structure, the K2 algorithm searches the BN structure space and selects the structure maximizing the K2 metric. To improve the accuracy of the K2-based BN classifier, we investigate the K2 algorithm initial ordering, search procedure, and metric. We find that BN structures learned using random initial orderings, orderings based on expert knowledge, or a scatter criterion are comparable and lead to similar classification accuracies. Replacing the K2 search with hill-climbing search improves the accuracy as does the inclusion of hidden nodes in the BN structure. Also, we demonstrate that though the maximization of the K2 metric solicits structures providing improved inference, these structures contribute to only limited classification accuracy.
引用
收藏
页码:74 / 96
页数:23
相关论文
共 50 条
  • [31] An adaptive prequential learning framework for Bayesian Network Classifiers
    Castillo, Gladys
    Gama, Joao
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2006, PROCEEDINGS, 2006, 4213 : 67 - 78
  • [32] Learning Bayesian network classifiers from label proportions
    Hernandez-Gonzalez, Jeronimo
    Inza, Inaki
    Lozano, Jose A.
    PATTERN RECOGNITION, 2013, 46 (12) : 3425 - 3440
  • [33] MAXIMUM MARGIN STRUCTURE LEARNING OF BAYESIAN NETWORK CLASSIFIERS
    Pernkopf, Franz
    Wohlmayr, Michael
    Muecke, Manfred
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2076 - 2079
  • [34] Learning Attentive Fusion of Multiple Bayesian Network Classifiers
    Eghbali, Sepehr
    Ahmadabadi, Majid Nili
    Araabi, Babak Nadjar
    Mirian, Maryam
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 133 - 140
  • [35] Differentiable TAN Structure Learning for Bayesian Network Classifiers
    Roth, Wolfgang
    Pernkopf, Franz
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 389 - 400
  • [36] Discriminative parameter learning of general Bayesian network classifiers
    Shen, B
    Su, XY
    Greiner, R
    Musilek, P
    Cheng, C
    15TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2003, : 296 - 305
  • [37] Hierarchical Independence Thresholding for learning Bayesian network classifiers
    Liu, Yang
    Wang, Limin
    Mammadov, Musa
    Chen, Shenglei
    Wang, Gaojie
    Qi, Sikai
    Sun, Minghui
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [38] Bayesian network classifiers
    Friedman, N
    Geiger, D
    Goldszmidt, M
    MACHINE LEARNING, 1997, 29 (2-3) : 131 - 163
  • [39] Bayesian Network Classifiers
    Nir Friedman
    Dan Geiger
    Moises Goldszmidt
    Machine Learning, 1997, 29 : 131 - 163
  • [40] Discriminative vs. generative learning of Bayesian network classifiers
    Santafe, Guzman
    Lozano, Jose A.
    Larranaga, Pedro
    Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Proceedings, 2007, 4724 : 453 - 464