Input load identification of nonlinear tower structural system using intelligent inverse estimation algorithm

被引:4
|
作者
Lee, Ming-Hui [1 ]
Liu, Ying-Wei [2 ]
机构
[1] Chinese Mil Acad, Dept Civil Engn, Kaohsiung, Taiwan
[2] Natl Pingtung Univ Sci & Technol, Dept Civil Engn, Pingtung, Taiwan
关键词
inverse estimation; extended Kalman filter; least squares; FORCE VIBRATION PROBLEM;
D O I
10.1016/j.proeng.2014.06.377
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
An extended inverse estimation algorithm was developed to effectively estimate the unknown input load in nonlinear structural systems. This algorithm combines the extended Kalman filter and intelligent recursive least squares estimator. This study investigated the unknown input load applied on a tower structural system. Nonlinear characteristics will exist in various structural systems. The nonlinear characteristics are particularly more obvious when applying a larger input load. Numerical simulation cases involving different input load types are studied in this paper. The simulation results verify the nonlinear characteristics of the structural system. This algorithm is effective in estimating unknown input loads. (C) 2014 Elsevier Ltd.
引用
收藏
页码:540 / 549
页数:10
相关论文
共 50 条
  • [31] Structural identification of partially nonlinear system subjected to seismic excitation using Intelligent Parameter Varying (IPV) approach
    Furukawa, T
    Saadat, S
    Ishibashi, M
    Buckner, GD
    Noori, MN
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON EARTHQUAKE ENGINEERING: NEW FRONTIER AND RESEARCH TRANSFORMATION, 2004, : 868 - 872
  • [32] Input force estimation of a cantilever plate by using a system identification technique
    Liu, JJ
    Ma, CK
    Kung, IC
    Lin, DC
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (11-12) : 1309 - 1322
  • [33] A class of unbiased identification for inverse system with input noises
    School of Mathematics and Computer Science, Nanjing Normal University, Nanjing Jiangsu 210049, China
    不详
    Kong Zhi Li Lun Yu Ying Yong, 2009, 9 (1031-1034): : 1031 - 1034
  • [34] Adaptive weighting input estimation of a nonlinear system
    Lin, Dong-Cherng
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2010, 18 (07) : 891 - 905
  • [35] VARYING STEP LENGTH ESTIMATION USING NONLINEAR SYSTEM IDENTIFICATION
    Wandan, Ahmed
    Omr, Medhat
    Georgy, Jacques
    Noureldin, Aboelmagd
    PROCEEDINGS OF THE 26TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2013), 2013, : 1652 - 1658
  • [36] Intelligent early structural health prognosis with nonlinear system identification for RFID signal analysis
    Chen, Hanxin
    Chen, Yongting
    Yang, Liu
    COMPUTER COMMUNICATIONS, 2020, 157 (157) : 150 - 161
  • [37] Input design for structured nonlinear system identification
    Vincent, Tyrone L.
    Novara, Carlo
    Hsu, Kenneth
    Poolla, Kameshwar
    AUTOMATICA, 2010, 46 (06) : 990 - 998
  • [38] Nonlinear Power System Load Identification Using Local Model Networks
    Miranian, Arash
    Rouzbehi, Kumars
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (03) : 2872 - 2881
  • [39] Nonlinear system identification and control using state transition algorithm
    Zhou, Xiaojun
    Yang, Chunhua
    Gui, Weihua
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 : 169 - 179
  • [40] A Modified Online Input Estimation Algorithm for Inverse Modeling of Steel Quenching
    Ali, S. K.
    Hamed, M. S.
    Lightstone, M. F.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2010, 57 (01) : 1 - 29