Input load identification of nonlinear tower structural system using intelligent inverse estimation algorithm

被引:4
|
作者
Lee, Ming-Hui [1 ]
Liu, Ying-Wei [2 ]
机构
[1] Chinese Mil Acad, Dept Civil Engn, Kaohsiung, Taiwan
[2] Natl Pingtung Univ Sci & Technol, Dept Civil Engn, Pingtung, Taiwan
关键词
inverse estimation; extended Kalman filter; least squares; FORCE VIBRATION PROBLEM;
D O I
10.1016/j.proeng.2014.06.377
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
An extended inverse estimation algorithm was developed to effectively estimate the unknown input load in nonlinear structural systems. This algorithm combines the extended Kalman filter and intelligent recursive least squares estimator. This study investigated the unknown input load applied on a tower structural system. Nonlinear characteristics will exist in various structural systems. The nonlinear characteristics are particularly more obvious when applying a larger input load. Numerical simulation cases involving different input load types are studied in this paper. The simulation results verify the nonlinear characteristics of the structural system. This algorithm is effective in estimating unknown input loads. (C) 2014 Elsevier Ltd.
引用
收藏
页码:540 / 549
页数:10
相关论文
共 50 条
  • [21] An efficient inverse algorithm for load identification of stochastic structures
    Wang, Linjun
    Liao, Wei
    Xie, Youxiang
    Du, Yixian
    INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2020, 16 (04) : 869 - 882
  • [22] An efficient inverse algorithm for load identification of stochastic structures
    Linjun Wang
    Wei Liao
    Youxiang Xie
    Yixian Du
    International Journal of Mechanics and Materials in Design, 2020, 16 : 869 - 882
  • [23] Intelligent approach for distribution system load estimation
    Ramesh, L.
    Chowdhury, S.
    Chowdhury, S. P.
    Natarajan, A. A.
    Taylor, G. A.
    Song, Y. H.
    2007 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-10, 2007, : 4144 - +
  • [24] Input estimation and identification of extra inputs in inverse DEA models
    Jahanshahloo, GR
    Lotfi, FH
    Shoja, N
    Tohidi, G
    Razavyan, S
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (02) : 427 - 437
  • [25] Batch and Recursive Bayesian Estimation Methods for Nonlinear Structural System Identification
    Astroza, Rodrigo
    Ebrahimian, Hamed
    Conte, Joel P.
    RISK AND RELIABILITY ANALYSIS: THEORY AND APPLICATIONS: IN HONOR OF PROF. ARMEN DER KIUREGHIAN, 2017, : 341 - 364
  • [26] Nonlinear System Identification and Estimation
    How, Jonathan P.
    IEEE CONTROL SYSTEMS MAGAZINE, 2016, 36 (03): : 5 - 7
  • [27] Structural system identification using a neural network algorithm
    Chen, CH
    Yang, YB
    STRUCTURAL HEALTH MONITORING AND INTELLIGENT INFRASTRUCTURE, VOLS 1 AND 2, 2003, : 587 - 592
  • [28] Inverse System Identification of Nonlinear Systems Using LSSVM Based on Clustering
    Sun, Changyin
    Mu, Chaoxu
    Liang, Hua
    ADVANCES IN NEURAL NETWORKS - ISNN 2008, PT I, PROCEEDINGS, 2008, 5263 : 682 - 690
  • [29] Designing An Optimal Control Law for Nonlinear System by Using Intelligent Algorithm
    Rastegarpour, S.
    Shahmansoorian, A.
    Mazinan, A. H.
    PROCEEDINGS OF 2013 2ND INTERNATIONAL CONFERENCE ON MEASUREMENT, INFORMATION AND CONTROL (ICMIC 2013), VOLS 1 & 2, 2013, : 830 - 836
  • [30] Inverse model, identification of nonlinear dynamic system using neural network
    Mang, Ming-Guang
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 2451 - 2455