ROC Curves in Non-Parametric Location-Scale Regression Models

被引:24
|
作者
Gonzalez-Manteiga, Wenceslao
Carlos Pardo-Fernandez, Juan [1 ]
van Keilegom, Ingrid
机构
[1] Univ Vigo, Dept Estatist & Invest Operat, EU Enxenaria Tecn Ind, Vigo 36208, Spain
基金
欧洲研究理事会;
关键词
area under the curve; conditional ROC curve; location-scale regression models; non-parametric regression; relative distribution; OPERATING CHARACTERISTIC CURVES; CONTINUOUS DIAGNOSTIC-TESTS; BANDWIDTH SELECTION;
D O I
10.1111/j.1467-9469.2010.00693.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The receiver operating characteristic (ROC) curve is a tool of extensive use to analyse the discrimination capability of a diagnostic variable in medical studies. In certain situations, the presence of a covariate related to the diagnostic variable can increase the discriminating power of the ROC curve. In this article, we model the effect of the covariate over the diagnostic variable by means of non-parametric location-scale regression models. We propose a new non-parametric estimator of the conditional ROC curve and study its asymptotic properties. We also present some simulations and an illustration to a data set concerning diagnosis of diabetes.
引用
收藏
页码:169 / 184
页数:16
相关论文
共 50 条
  • [21] Tests for independence in non-parametric heteroscedastic regression models
    Hlavka, Zdenek
    Huskova, Marie
    Meintanis, Simos G.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (04) : 816 - 827
  • [22] Averaged non-parametric regression in analysis of transformation models
    Dabrowska, DM
    [J]. LIMIT THEOREMS IN PROBABILITY AND STATISTICS, VOL I, 2002, : 479 - 494
  • [23] Regression models for convex ROC curves
    Lloyd, CJ
    [J]. BIOMETRICS, 2000, 56 (03) : 862 - 867
  • [24] Smooth non-parametric receiver operating characteristic (ROC) curves for continuous diagnostic tests
    Zou, KH
    Hall, WJ
    Shapiro, DE
    [J]. STATISTICS IN MEDICINE, 1997, 16 (19) : 2143 - 2156
  • [25] NON-PARAMETRIC LACTATION CURVES
    ELSTON, DA
    GLASBEY, CA
    NEILSON, DR
    [J]. ANIMAL PRODUCTION, 1989, 48 : 331 - 339
  • [26] ROBUST ESTIMATION: LOCATION-SCALE AND REGRESSION PROBLEMS
    Wei, Wen Hsiang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (03): : 1055 - 1093
  • [27] Distribution-Free Location-Scale Regression
    Siegfried, Sandra
    Kook, Lucas
    Hothorn, Torsten
    [J]. AMERICAN STATISTICIAN, 2023, 77 (04): : 345 - 356
  • [28] Parametric versus non-parametric models (curves, surfaces): Applications to medical imagery
    Faugeras, O
    Osher, S
    Terzopoulos, D
    [J]. IEEE WORKSHOP ON VARIATIONAL AND LEVEL SET METHODS IN COMPUTER VISION, PROCEEDINGS, 2001, : 39 - 39
  • [29] ASYMPTOTICALLY EFFICIENT NON-PARAMETRIC ESTIMATORS OF LOCATION AND SCALE PARAMETERS
    WEISS, L
    WOLFOWIT.J
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1970, 16 (02): : 134 - &
  • [30] Warped Metrics for Location-Scale Models
    Said, Salem
    Berthoumieu, Yannick
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 631 - 638