Germs of de Rham cohomology classes which vanish at the generic point

被引:0
|
作者
Esnault, H [1 ]
Viehweg, E [1 ]
机构
[1] Univ Essen Gesamthsch, Fachbereich Math 6, D-45117 Essen, Germany
关键词
D O I
10.1016/S0764-4442(98)80050-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that hypergeometric differential equations, unitary and Gau beta-Manin connections give rise to de Rham cohomology sheaves which do not admit a Bloch-Ogus resolution [1]. The latter is in contrast to Panin's theorem [8] asserting that corresponding etale cohomology sheaves do fulfill Bloch-Ogus theory. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:857 / 862
页数:6
相关论文
共 50 条
  • [41] The de Rham-Fargues-Fontaine cohomology
    Bras, Arthur-Cesar Le
    Vezzani, Alberto
    ALGEBRA & NUMBER THEORY, 2023, 17 (12) : 2097 - 2150
  • [42] Reconstruction of the stacky approach to de Rham cohomology
    Shubhodip Mondal
    Mathematische Zeitschrift, 2022, 302 : 687 - 693
  • [43] Finiteness of de Rham cohomology in rigid analysis
    Grosse-Klönne, E
    DUKE MATHEMATICAL JOURNAL, 2002, 113 (01) : 57 - 91
  • [44] OVERCONVERGENT DE RHAM-WITT COHOMOLOGY
    Davis, Christopher
    Langer, Andreas
    Zink, Thomas
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2011, 44 (02): : 197 - 262
  • [45] Poincaré duality for algebraic de rham cohomology
    Francesco Baldassarri
    Maurizio Cailotto
    Luisa Fiorot
    manuscripta mathematica, 2004, 114 : 61 - 116
  • [46] Equivariant de Rham cohomology: theory and applications
    Goertsches, Oliver
    Zoller, Leopold
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (02): : 539 - 596
  • [47] MODULAR FORMS, DE RHAM COHOMOLOGY AND CONGRUENCES
    Kazalicki, Matija
    Scholl, Anthony J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (10) : 7097 - 7117
  • [48] Superspace de Rham complex and relative cohomology
    Linch, William D., III
    Randall, Stephen
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09): : 1 - 22
  • [49] Effective de Rham cohomology - The general case
    Scheiblechner, Peter
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (05)
  • [50] DE RHAM'S THEOREM FOR ORLICZ COHOMOLOGY
    Sequeira, E.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (04) : 777 - 788