The de Rham-Fargues-Fontaine cohomology

被引:1
|
作者
Bras, Arthur-Cesar Le [1 ]
Vezzani, Alberto [2 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, CNRS, Strasbourg, France
[2] Univ Milan, Dipartimento Matemat F Enriques, Milan, Italy
关键词
p-adic Hodge theory; Fargues-Fontaine curve; de Rham cohomology; rigid analytic varieties; perfectoid spaces; motives; CATEGORIES;
D O I
10.2140/ant.2023.17.2097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how to attach to any rigid analytic variety V over a perfectoid space P a rigid analytic motive over the Fargues-Fontaine curve X (P) functorially in V and P. We combine this construction with the overconvergent relative de Rham cohomology to produce a complex of solid quasicoherent sheaves over X (P), and we show that its cohomology groups are vector bundles if V is smooth and proper over P or if V is quasicompact and P is a perfectoid field, thus proving and generalizing a conjecture of Scholze. The main ingredients of the proofs are explicit B1-homotopies, the motivic proper base change and the formalism of solid quasicoherent sheaves.
引用
收藏
页码:2097 / 2150
页数:55
相关论文
共 50 条