The de Rham-Fargues-Fontaine cohomology

被引:1
|
作者
Bras, Arthur-Cesar Le [1 ]
Vezzani, Alberto [2 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, CNRS, Strasbourg, France
[2] Univ Milan, Dipartimento Matemat F Enriques, Milan, Italy
关键词
p-adic Hodge theory; Fargues-Fontaine curve; de Rham cohomology; rigid analytic varieties; perfectoid spaces; motives; CATEGORIES;
D O I
10.2140/ant.2023.17.2097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how to attach to any rigid analytic variety V over a perfectoid space P a rigid analytic motive over the Fargues-Fontaine curve X (P) functorially in V and P. We combine this construction with the overconvergent relative de Rham cohomology to produce a complex of solid quasicoherent sheaves over X (P), and we show that its cohomology groups are vector bundles if V is smooth and proper over P or if V is quasicompact and P is a perfectoid field, thus proving and generalizing a conjecture of Scholze. The main ingredients of the proofs are explicit B1-homotopies, the motivic proper base change and the formalism of solid quasicoherent sheaves.
引用
收藏
页码:2097 / 2150
页数:55
相关论文
共 50 条
  • [31] The de Rham cohomology of the Suzuki curves
    Malmskog, Beth
    Pries, Rachel
    Weir, Colin
    ARITHMETIC GEOMETRY: COMPUTATION AND APPLICATIONS, 2019, 722 : 105 - 119
  • [32] De Rham Cohomology and Integration in Manifolds
    Sossinsky, A. B.
    MATHEMATICAL NOTES, 2020, 107 (5-6) : 1034 - 1037
  • [33] DE RHAM COHOMOLOGY OF LOCAL COHOMOLOGY MODULES: THE GRADED CASE
    Puthenpurakal, Tony J.
    NAGOYA MATHEMATICAL JOURNAL, 2015, 217 : 1 - 21
  • [34] COHOMOLOGY WITH COEFFICIENTS IN Z(P) AND DE RHAM COHOMOLOGY - EXAMPLES
    HAMM, HA
    ASTERISQUE, 1989, (179-80) : 113 - 144
  • [35] DE RHAM COHOMOLOGY AND P-ADIC ETALE COHOMOLOGY
    ILLUSIE, L
    ASTERISQUE, 1990, (189-90) : 325 - 374
  • [36] Punctured local holomorphic de Rham cohomology
    Huang, XJ
    Luk, HS
    Yau, SST
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (03) : 633 - 640
  • [37] OVERCONVERGENT DE RHAM-WITT COHOMOLOGY
    Davis, Christopher
    Langer, Andreas
    Zink, Thomas
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2011, 44 (02): : 197 - 262
  • [38] Poincaré duality for algebraic de rham cohomology
    Francesco Baldassarri
    Maurizio Cailotto
    Luisa Fiorot
    manuscripta mathematica, 2004, 114 : 61 - 116
  • [39] A VANISHING THEOREM IN TWISTED DE RHAM COHOMOLOGY
    Ferreira, Ana Cristina
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2013, 56 (02) : 501 - 508
  • [40] Reconstruction of the stacky approach to de Rham cohomology
    Shubhodip Mondal
    Mathematische Zeitschrift, 2022, 302 : 687 - 693