A Sparse Decomposition-Based Algorithm for Estimating the Parameters of Polynomial Phase Signals

被引:3
|
作者
Ou, Guojian [1 ]
Zhao, Pengju [1 ]
Liu, Song [2 ]
Liu, Guowei [1 ]
机构
[1] Chongqing Coll Elect Engn, Chongqing 401331, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Chongqing 400001, Peoples R China
基金
中国国家自然科学基金;
关键词
Polynomial phase signals (mc-PPSs); parameter estimation; high-order ambiguity function (HAF); sparse decomposition; the combined dictionary; ORDER AMBIGUITY FUNCTION; JOINT ESTIMATION;
D O I
10.1109/ACCESS.2019.2896629
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an algorithm in which fast sparse decomposition is used to estimate the polynomial phase signal (PPS) parameters. In the proposed algorithm, a fast sparse decomposition is applied to the second-order PPSs, which outperforms three other algorithms in decomposition rate and convergence. The proposed algorithm also estimates the PPS parameters more accurately than other sparse decomposition algorithms. For PPSs whose order exceeds two, the order can be reduced to two via phase differentiation, after which parameters can be estimated using fast sparse decomposition. The simulation results show that the proposed algorithm is characterized by a lower signal-to-noise ratio and higher estimation accuracy than high-order ambiguity function and other recently proposed algorithms.
引用
收藏
页码:20432 / 20441
页数:10
相关论文
共 50 条
  • [1] An iterative algorithm for estimating the parameters of polynomial phase signals
    OShea, P
    ISSPA 96 - FOURTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, VOLS 1 AND 2, 1996, : 730 - 731
  • [2] A fast robust and simple algorithm for estimating parameters of polynomial phase signals
    Fourt, Olivier
    Benidir, Messaoud
    TRAITEMENT DU SIGNAL, 2007, 24 (03) : 165 - 173
  • [3] A refined PCPF algorithm for estimating the parameters of multicomponent polynomial-phase signals
    Ou, Guojian
    Hu, Yunbing
    Wu, Chunling
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (04) : 1531 - 1552
  • [4] A refined PCPF algorithm for estimating the parameters of multicomponent polynomial-phase signals
    Guojian Ou
    Yunbing Hu
    Chunling Wu
    Multidimensional Systems and Signal Processing, 2020, 31 : 1531 - 1552
  • [5] Decomposition-based Method for Sparse Semidefinite Relaxations of Polynomial Optimization Problems
    P. M. Kleniati
    P. Parpas
    B. Rustem
    Journal of Optimization Theory and Applications, 2010, 145 : 289 - 310
  • [6] Decomposition-based Method for Sparse Semidefinite Relaxations of Polynomial Optimization Problems
    Kleniati, P. M.
    Parpas, P.
    Rustem, B.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 145 (02) : 289 - 310
  • [7] Estimating parameters of polynomial phase signals by tracking algorithms
    Tichavsky, P
    Händel, P
    NINTH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1998, : 348 - 351
  • [8] A Modified CPF Algorithm for Estimating the Parameters of Multicomponent Third-Order Polynomial Phase Signals
    Ou, Guojian
    Liu, Zhongli
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT 2017), 2017, : 338 - 342
  • [9] An Algorithm Based on Sparse Decomposition for Estimating Harmonic and Interharmonic Components of Stationary Signals in Power Systems
    Prado, Tatiana De Almeida
    Barros, Andrea Macario
    Guarneri, Giovanni Alfredo
    IEEE ACCESS, 2019, 7 : 163958 - 163968
  • [10] A fast method for sparse decomposition of real second-order polynomial phase signals
    Ou, Guojian
    Yang, Shizhong
    Jiang, Qingping
    Ou, G. (ouguojia_2005@qq.com), 1600, Binary Information Press (10): : 5265 - 5270