A fast method for sparse decomposition of real second-order polynomial phase signals

被引:0
|
作者
Ou, Guojian [1 ,2 ]
Yang, Shizhong [1 ]
Jiang, Qingping [1 ]
机构
[1] [1,Ou, Guojian
[2] Yang, Shizhong
[3] Jiang, Qingping
来源
Ou, G. (ouguojia_2005@qq.com) | 1600年 / Binary Information Press卷 / 10期
关键词
D O I
10.12733/jcis10685
中图分类号
学科分类号
摘要
引用
收藏
页码:5265 / 5270
相关论文
共 50 条
  • [1] A Fast Sparse Decomposition for Three-order Polynomial Phase Signal Based on Subspace
    Ou Guojian
    Jiang Qingping
    Qing Changchun
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (03) : 648 - 655
  • [2] The “phase function” method to solve second-order asymptotically polynomial differential equations
    Renato Spigler
    Marco Vianello
    Numerische Mathematik, 2012, 121 : 565 - 586
  • [3] The "phase function" method to solve second-order asymptotically polynomial differential equations
    Spigler, Renato
    Vianello, Marco
    NUMERISCHE MATHEMATIK, 2012, 121 (03) : 565 - 586
  • [4] Taylor Series Method for Second-Order Polynomial ODEs
    Latypov, Viktor
    Sokolov, Sergei
    2015 INTERNATIONAL CONFERENCE "STABILITY AND CONTROL PROCESSES" IN MEMORY OF V.I. ZUBOV (SCP), 2015, : 62 - 64
  • [5] Second-order sampling based fast recovery of bandpass signals
    Huang, Y
    Xiao, XC
    Lin, YS
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 7 - 10
  • [6] Second-order sampling based fast recovery of bandpass signals
    Huang, Yong
    Xiao, Xianci
    Lin, Yunsong
    International Conference on Signal Processing Proceedings, ICSP, 1998, 1 : 7 - 10
  • [7] Real Normal Form of a Binary Polynomial at a Second-Order Critical Point
    A. B. Batkhin
    A. D. Bruno
    Computational Mathematics and Mathematical Physics, 2023, 63 : 1 - 13
  • [8] Real Normal Form of a Binary Polynomial at a Second-Order Critical Point
    Batkhin, A. B.
    Bruno, A. D.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (01) : 1 - 13
  • [9] A Sparse Decomposition-Based Algorithm for Estimating the Parameters of Polynomial Phase Signals
    Ou, Guojian
    Zhao, Pengju
    Liu, Song
    Liu, Guowei
    IEEE ACCESS, 2019, 7 : 20432 - 20441
  • [10] PUMA-SPA: A Phase Unwrapping Method Based on PUMA and Second-Order Polynomial Approximation
    Hao Hongxing
    Wu Lingda
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (11) : 1906 - 1910