Learning-Assisted Multimodality Dielectric Imaging

被引:48
|
作者
Chen, Guanbo [1 ]
Shah, Pratik [2 ]
Stang, John [3 ]
Moghaddam, Mahta [3 ]
机构
[1] Samsung Res Amer, Plano, TX 75023 USA
[2] Acutus Med Inc, Carlsbad, CA 92008 USA
[3] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
关键词
Convolutional neural network (CNN); dielectric imaging; inverse scattering; microwave imaging; multimodality imaging; CONVOLUTIONAL NEURAL-NETWORK; MICROWAVE TOMOGRAPHY; BIOLOGICAL TISSUES; BREAST; RECONSTRUCTION; INFORMATION; CHALLENGES;
D O I
10.1109/TAP.2019.2948565
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a convolutional neural network (CNN)-assisted dielectric imaging method, which uses CNN to incorporate the abundant image information from magnetic resonance (MR) images into the model- based microwave inverse scattering imaging process and generate high-fidelity dielectric images. A CNN is designed and trained to learn the complex mapping function from MR T1 images to dielectric images. Once trained, the new patients' MR T1 images are fed into the CNN to generate predicted dielectric images, which are used as the starting image for the microwave inverse scattering imaging. The CNN-predicted dielectric image, containing abundant prior information from MR images, significantly reduces the non-linearity and ill-posedness of the inverse scattering problem. We demonstrate the application of the proposed method to recover human brain dielectric images at 4 and 2 mm resolution with single- frequency and multifrequency microwave measurements. The reconstructed brain dielectric images with the proposed method show significant improvements in image quality compared with images reconstructed with no assistance from MR and CNN.
引用
收藏
页码:2356 / 2369
页数:14
相关论文
共 50 条
  • [1] Machine learning-assisted equivalent circuit identification for dielectric spectroscopy of polymers
    Albakri, Bashar
    Diniz, Analice Turski Silva
    Benner, Philipp
    Muth, Thilo
    Nakajima, Shinichi
    Favaro, Marco
    Kister, Alexander
    [J]. ELECTROCHIMICA ACTA, 2024, 496
  • [2] Machine learning-assisted imaging analysis of a human epiblast model
    Irizarry, Agnes M. Resto
    Esfahani, Sajedeh Nasr
    Zheng, Yi
    Yan, Robin Zhexuan
    Kinnunen, Patrick
    Fu, Jianping
    [J]. INTEGRATIVE BIOLOGY, 2021, 13 (09) : 221 - 229
  • [3] Deep learning-assisted multispectral imaging for early screening of skin diseases
    Jiang, Zhengshuai
    Gu, Xiaming
    Chen, Dongdong
    Zhang, Min
    Xu, Congcong
    [J]. PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2024, 48
  • [4] Deep Learning-Assisted Diffusion Tensor Imaging for Evaluation of the Physis and Metaphysis
    Duong, Phuong T.
    Santos, Laura
    Hsu, Hao-Yun
    Jambawalikar, Sachin
    Mutasa, Simukayi
    Nguyen, Michael K.
    Guariento, Andressa
    Jaramillo, Diego
    [J]. JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (02): : 756 - 765
  • [5] Deep learning-assisted common temperature measurement based on visible light imaging
    Zhu, Jia-Yi
    He, Zhi-Min
    Huang, Cheng
    Zeng, Jun
    Lin, Hui-Chuan
    Chen, Fu-Chang
    Yu, Chao-Qun
    Li, Yan
    Zhang, Yong-Tao
    Chen, Huan-Ting
    Pu, Ji-Xiong
    [J]. CHINESE PHYSICS B, 2024, 33 (08)
  • [6] Learning-assisted optimization for transmission switching
    Pineda, Salvador
    Morales, Juan Miguel
    Jimenez-Cordero, Asuncion
    [J]. TOP, 2024,
  • [7] Machine learning-assisted enzyme engineering
    Siedhoff, Niklas E.
    Schwaneberg, Ulrich
    Davari, Mehdi D.
    [J]. ENZYME ENGINEERING AND EVOLUTION: GENERAL METHODS, 2020, 643 : 281 - 315
  • [8] Learning-Assisted Intelligent Scheduling System
    Madureira, Ana
    Pereira, Joao Paulo
    Pereira, Ivo
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 2820 - 2825
  • [9] Learning-Assisted Automated Reasoning with Flyspeck
    Cezary Kaliszyk
    Josef Urban
    [J]. Journal of Automated Reasoning, 2014, 53 : 173 - 213
  • [10] Cluster learning-assisted directed evolution
    Qiu, Yuchi
    Hu, Jian
    Wei, Guo-Wei
    [J]. NATURE COMPUTATIONAL SCIENCE, 2021, 1 (12): : 809 - 818