Detection Of Greenhouse Gases Using Infrared Hyperspectral Imagery

被引:0
|
作者
Gur, Yusuf [1 ]
Omruuzun, Fatih [1 ]
Ozisik Baskurt, Didem [1 ]
Yardimci Cetin, Yasemin [1 ]
机构
[1] Orta Dogu Tekn Univ, Bilisim Sistemleri Bolumu, Ankara, Turkey
关键词
infrared hyperspectral imaging; remote sensing; gas detection;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the global issues that threatens human and environmental health is the harmful substances leaking to the atmosphere as a result of industrial, agricultural and other activities. These substances intensively contain gaseous, such as; water vapor, carbon dioxide, methane, nitrogen oxide and ozone that cause greenhouse effect. Due to the high-resolution information provided in both spatial and spectral domains, hyperspectral imagers have recently been used as an alternative method for standoff detection of these substances. The methods proposed in the literature use atmospheric models or estimation methods to obtain crucial parameters that are required for modelling the measured radiance. In this study, we propose a method to detect and identify greenhouse gaseous, which are released from different sources, that does not require the such parameters for modelling the measured radiance.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] DETECTION AND IDENTIFICATION OF EFFLUENT GASES BY LONG WAVE INFRARED (LWIR) HYPERSPECTRAL IMAGES
    Sagiv, Lior
    Rotman, Stanley R.
    Blumberg, Dan G.
    2008 IEEE 25TH CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, VOLS 1 AND 2, 2008, : 413 - 417
  • [22] DISGUISE DETECTION AND IDENTIFICATION USING INFRARED IMAGERY
    PROKOSKI, FJ
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 339 : 27 - 31
  • [23] Overview of physical models and statistical approaches for weak gaseous plume detection using passive infrared hyperspectral imagery
    Burr, Tom
    Hengartner, Nicolas
    SENSORS, 2006, 6 (12) : 1721 - 1750
  • [24] Anomaly Detection of Hyperspectral Imagery Using Modified Collaborative Representation
    Vafadar, Maryam
    Ghassemian, Hassan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (04) : 577 - 581
  • [25] Consensus Anomaly Detection Using Clustering Methods in Hyperspectral imagery
    Amiel, Yoav
    Frajman, Adar
    Rotman, Stanley R.
    IMAGING SPECTROMETRY XXIV: APPLICATIONS, SENSORS, AND PROCESSING, 2020, 11504
  • [26] Detection of fecal contamination on cantaloupes using hyperspectral fluorescence imagery
    Vargas, AM
    Kim, MS
    Tao, Y
    Lefcourt, AM
    Chen, YR
    Luo, YG
    Song, YS
    Buchanan, R
    JOURNAL OF FOOD SCIENCE, 2005, 70 (08) : E471 - E476
  • [27] THE DETECTION OF CONCEALED TARGETS IN WOODLAND AREAS USING HYPERSPECTRAL IMAGERY
    Rodriguez Gonzalez, Santiago A.
    Shimoni, Michal
    Plaza, Javier
    Plaza, Antonio
    Renhorn, Ingmar
    Ahlberg, Joergen
    2020 IEEE LATIN AMERICAN GRSS & ISPRS REMOTE SENSING CONFERENCE (LAGIRS), 2020, : 451 - 455
  • [28] Adaptive anomaly detection using subspace separation for hyperspectral imagery
    Kwon, HS
    Der, SZ
    Nasrabadi, NM
    OPTICAL ENGINEERING, 2003, 42 (11) : 3342 - 3351
  • [29] Varroa destructor detection on honey bees using hyperspectral imagery
    Duma, Zina-Sabrina
    Zemcik, Tomas
    Bilik, Simon
    Sihvonen, Tuomas
    Honec, Peter
    Reinikainen, Satu-Pia
    Horak, Karel
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 224
  • [30] Target detection in hyperspectral imagery using demixed spectral angles
    Gillis, D
    Bowles, J
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING IX, 2004, 5238 : 244 - 254