Overview of physical models and statistical approaches for weak gaseous plume detection using passive infrared hyperspectral imagery

被引:34
|
作者
Burr, Tom [1 ]
Hengartner, Nicolas [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
基金
英国医学研究理事会;
关键词
clutter; generalized least squares; infrared; model averaging; temperature-emissivity separation; errors in predictors; plume detection;
D O I
10.3390/s6121721
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The performance of weak gaseous plume-detection methods in hyperspectral long-wave infrared imagery depends on scene-specific conditions such at the ability to properly estimate atmospheric transmission, the accuracy of estimated chemical signatures, and background clutter. This paper reviews commonly-applied physical models in the context of weak plume identification and quantification, identifies inherent error sources as well as those introduced by making simplifying assumptions, and indicates research areas.
引用
收藏
页码:1721 / 1750
页数:30
相关论文
共 18 条
  • [1] Nonlinear signal contamination effects for gaseous plume detection in hyperspectral imagery
    Theiler, James
    Foy, Bernard R.
    Fraser, Andrew M.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
  • [2] Statistical models for target detection in infrared imagery
    Huddleston, Samuel H.
    Zhou, Xin
    Evans, William B.
    Chan, Alice
    DeVore, Michael D.
    [J]. AUTOMATIC TARGET RECOGNITION XVII, 2007, 6566
  • [3] Detection Of Greenhouse Gases Using Infrared Hyperspectral Imagery
    Gur, Yusuf
    Omruuzun, Fatih
    Ozisik Baskurt, Didem
    Yardimci Cetin, Yasemin
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [4] Identification and detection of gaseous effluents from hyperspectral imagery using invariant algorithms
    O'Donnell, EM
    Messinger, DW
    Salvaggio, C
    Schott, JR
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY X, 2004, 5425 : 573 - 582
  • [5] Detection of a buoyant coastal wastewater discharge using airborne hyperspectral and infrared imagery
    Marmorino, George O.
    Smith, Geoffrey B.
    Miller, W. D.
    Bowles, Jeffrey H.
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2010, 4
  • [6] WEAK SIGNAL DETECTION IN HYPERSPECTRAL IMAGERY USING SPARSE MATRIX TRANSFORM (SMT) COVARIANCE ESTIMATION
    Cao, Guangzhi
    Bouman, Charles A.
    Theiler, James
    [J]. 2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 91 - +
  • [7] Statistical detection of resolved targets in background clutter using optical/infrared imagery
    Stotts, Larry B.
    Hoff, Lawrence E.
    [J]. APPLIED OPTICS, 2014, 53 (22) : 5042 - 5052
  • [8] Gas detection from smoke stacks: finding multiple constituent gases in a plume using infrared hyperspectral data
    Rotman, D. N.
    Rotman, S. R.
    Blumberg, D. G.
    Ontiveros, E.
    Messinger, D.
    [J]. ELECTRO-OPTICAL REMOTE SENSING, PHOTONIC TECHNOLOGIES, AND APPLICATIONS V, 2011, 8186
  • [9] Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models
    Darvishzadeh, Roshanak
    Atzberger, Clement
    Skidmore, Andrew
    Schlerf, Martin
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2011, 66 (06) : 894 - 906
  • [10] DETECTION OF METHANE AND HEAVY HYDROCARBON GASES IN THE INFRARED RANGE USING HYPERSPECTRAL AIRBORNE REMOTE SENSING: AN OVERVIEW
    Moreira Scafutto, Rebecca Del Papa
    de Souza Filho, Carlos Roberto
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5780 - 5783