Optical cryptanalysis: Metrics of robustness and cost functions

被引:1
|
作者
Lingel, Christian [1 ,2 ,3 ]
Sheridan, John T. [1 ,2 ,3 ]
机构
[1] Univ Coll Dublin, Coll Engn Math & Phys Sci, Sch Elect Elect & Mech Engn, Dublin 4, Ireland
[2] Univ Coll Dublin, Commun & Optoelect Res Ctr, Dublin 4, Ireland
[3] Univ Coll Dublin, SFI Strateg Res Cluster Solar Energy Convers, Dublin 4, Ireland
基金
爱尔兰科学基金会;
关键词
Encryption; Decryption; Double random phase encryption; Optical signal processing; Numerical analysis; FRACTIONAL FOURIER-TRANSFORM; RANDOM-PHASE; IMAGE ENCRYPTION; RETRIEVAL; SYSTEM; KEY; PLANE;
D O I
10.1016/j.optlaseng.2011.05.009
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The robustness of optical encryption systems is often quantified by plotting the normalised root mean square (NRMS) error against a particular error in the decryption process, i.e., misalignment of, or pixel errors in the decryption key. In addition, the NRMS appears as a cost function in heuristic iterative attacking techniques, employed to crack optical encryption systems. In fact several other potential measures can be used to quantify the error of a decryption process, for example the lambda parameter, entropy and different auto-focus (image sharpness) based values, i.e., the sum modulus difference and the focus value. Based on detailed numerical simulations, it is shown that in comparison to these other metrics the NRMS provides the best results when attacking an optical encryption system. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1131 / 1138
页数:8
相关论文
共 50 条
  • [1] Robustness of Contraction Metrics Computed by Radial Basis Functions
    Giesl, Peter
    Hafstein, Sigurdur
    Mehrabinezhad, Iman
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (ICINCO), 2021, : 592 - 599
  • [2] Cryptanalysis of Hash Functions
    Mendel, Florian
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2014, 2014, 8885 : XVIII - XIX
  • [3] MEASURING FUNCTIONAL ROBUSTNESS WITH NETWORK TOPOLOGICAL ROBUSTNESS METRICS
    Haley, Brandon
    Dong, Andy
    Tumer, Irem
    ICED 15, VOL 6: DESIGN METHODS AND TOOLS - PT 2, 2015,
  • [4] Robustness Metrics: Consolidating the Multiple Approaches to Quantify Robustness
    Gohler, Simon Moritz
    Eifler, Tobias
    Howard, Thomas J.
    JOURNAL OF MECHANICAL DESIGN, 2016, 138 (11)
  • [5] Metrics for the Evaluation of localisation Robustness
    Yi, Siqi
    Worrall, Stewart
    Nebot, Eduardo
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 1247 - 1253
  • [6] Cryptanalysis of the LSH hash functions
    Hao, Yonglin
    SECURITY AND COMMUNICATION NETWORKS, 2016, 9 (16) : 3296 - 3308
  • [7] Cryptanalysis of Hash Functions with Structures
    Khovratovich, Dmitry
    SELECTED AREAS IN CRYPTOGRAPHY, 2009, 5867 : 108 - 125
  • [8] Functions transferring metrics to metrics
    Dovgoshey O.
    Martio O.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (1): : 237 - 261
  • [9] Neural Cryptanalysis: Metrics, Methodology, and Applications in CPS Ciphers
    Xiao, Ya
    Hao, Qingying
    Yao, Danfeng
    2019 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (DSC), 2019, : 203 - 210
  • [10] Robustness of metrics used for scanpath comparison
    Dechterenko, Filip
    Lukavsky, Jiri
    2018 ACM SYMPOSIUM ON EYE TRACKING RESEARCH & APPLICATIONS (ETRA 2018), 2018,