Representing circles with five control points

被引:10
|
作者
Carnicer, JM [1 ]
Mainar, E
Peña, JM
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[2] Univ Cantabria, Dept Matemat Estadist & Computac, E-39005 Santander, Spain
关键词
trigonometric curves; shape preserving; totally positive basis; critical length;
D O I
10.1016/j.cagd.2003.06.007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show that five is the minimal dimension of a space required to draw a complete circle with a unique control polygon. We identify all five-dimensional spaces invariant under translations and reflections where we can find shape preserving representations of a circle parameterized by its arc length. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:501 / 511
页数:11
相关论文
共 50 条
  • [22] On circles containing the maximum number of points
    Akiyama, J
    Ishigami, Y
    Urabe, M
    Urrutia, J
    DISCRETE MATHEMATICS, 1996, 151 (1-3) : 15 - 18
  • [23] A COMBINATORIAL RESULT ON POINTS AND CIRCLES ON THE PLANE
    NEUMANNLARA, V
    URRUTIA, J
    DISCRETE MATHEMATICS, 1988, 69 (02) : 173 - 178
  • [24] On the Number of Lattice Points in the Shifted Circles
    Jabbarov, Ilgar Sh
    Aslanova, Natiga Sh
    Jeferli, Esmira, V
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (02): : 175 - 190
  • [25] Significant points on circles centre the circumcentre
    Bradley, Christopher J.
    MATHEMATICAL GAZETTE, 2011, 95 (534): : 404 - 406
  • [26] Some circles associated with concyclic points
    Coolidge, JL
    ANNALS OF MATHEMATICS, 1910, 12 : 39 - 44
  • [27] ON NUMBER OF CIRCLES DETERMINED BY N POINTS
    ELLIOTT, PDT
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2): : 181 - &
  • [28] On circles containing the maximum number of points
    Akiyama, J.
    Ishigami, Y.
    Urabe, M.
    Urrutia, J.
    1996, Elsevier (151) : 1 - 3
  • [29] Distance between Separating Circles and Points
    Veelaert, Peter
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, 2011, 6607 : 346 - 357
  • [30] CIRCLES THROUGH 2 POINTS THAT ALWAYS ENCLOSE MANY POINTS
    EDELSBRUNNER, H
    HASAN, N
    SEIDEL, R
    SHEN, XJ
    GEOMETRIAE DEDICATA, 1989, 32 (01) : 1 - 12