Representing circles with five control points

被引:10
|
作者
Carnicer, JM [1 ]
Mainar, E
Peña, JM
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[2] Univ Cantabria, Dept Matemat Estadist & Computac, E-39005 Santander, Spain
关键词
trigonometric curves; shape preserving; totally positive basis; critical length;
D O I
10.1016/j.cagd.2003.06.007
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show that five is the minimal dimension of a space required to draw a complete circle with a unique control polygon. We identify all five-dimensional spaces invariant under translations and reflections where we can find shape preserving representations of a circle parameterized by its arc length. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:501 / 511
页数:11
相关论文
共 50 条
  • [11] Separating Points by Circles Solution
    Chapman, Robin
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (08): : 755 - 755
  • [12] On circles enclosing many points
    Claverol, Merce
    Huemer, Clemens
    Martinez-Moraian, Alejandra
    DISCRETE MATHEMATICS, 2021, 344 (10)
  • [13] Close Lattice Points on Circles
    Cilleruelo, Javier
    Granville, Andrew
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (06): : 1214 - 1238
  • [14] GENERATION OF POLYGONS REPRESENTING CIRCLES, ELLIPSES AND HYPERBOLAS
    MAXWELL, PC
    BAKER, PW
    COMPUTER GRAPHICS AND IMAGE PROCESSING, 1979, 10 (01): : 84 - 93
  • [15] Representing convex geometries by almost-circles
    Gábor Czédli
    János Kincses
    Acta Scientiarum Mathematicarum, 2017, 83 (3-4): : 393 - 414
  • [16] Matching points with circles and squares
    Abrego, BM
    Arkin, EM
    Fernández-Merchant, S
    Hurtado, F
    Kano, M
    Mitchell, JSB
    Urrutia, J
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2005, 3742 : 1 - 15
  • [17] POINTS OF VIEW Representing the genome
    Nielsen, Cydney
    Wong, Bang
    NATURE METHODS, 2012, 9 (05) : 423 - 423
  • [18] Bezier curves for representing clothoids, circles and straight lines
    Montes, N
    Tornero, J
    Armesto, L
    ISC'2005: 3rd Industrial Simulation Conference 2005, 2005, : 206 - 210
  • [19] REPRESENTING HOMOLOGY CLASSES BY EMBEDDED CIRCLES ON A COMPACT SURFACE
    MEEKS, WH
    PATRUSKY, J
    ILLINOIS JOURNAL OF MATHEMATICS, 1978, 22 (02) : 262 - 269
  • [20] Focal points of congruence circles.
    Vincensini, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1932, 195 : 1359 - 1361