Indicator to estimate temperature sensitivity of resonance in temperature measurement by neutron resonance spectroscopy

被引:4
|
作者
Gu, Mu [1 ]
Fang, Hong [1 ]
Liu, Bo [1 ]
Liu, Xiaolin [1 ]
Huang, Shiming [1 ]
Ni, Chen [1 ]
Li, Zeren [2 ]
Wang, Rongbo [2 ]
机构
[1] Tongji Univ, Shanghai Key Lab Special Artificial Microstruct M, Dept Phys, Shanghai 200092, Peoples R China
[2] China Acad Engn Phys, Inst Fluid Phys, Mianyang 621900, Sichuan, Peoples R China
关键词
Neutron resonance; Temperature measurement; Indicator of temperature sensitivity; SHOCK COMPRESSION; RADIOGRAPHY; MOLYBDENUM; INTERFACES; ABSORPTION; PRESSURES; TUNGSTEN; CRYSTAL; BINDING; MODEL;
D O I
10.1016/j.nimb.2011.01.003
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Through series of simplification and simulation, we find that it is the ratio of z (=Delta/Gamma) and sigma(o) (cross-section at the exact resonance energy in the absence of temperature broadening) that contains the most information of temperature sensitivity for a resonance. We consequently define a factor h called the effective fitness indicator to represent the lower limit of temperature error for each resonance. Is bears succinct forms and is tested against numerical simulations as well as gathered experimental data. Our further analysis and simulation justify the use of h at high temperatures (above several hundreds degrees centigrade). When the transmission of a resonance is free from suffering a flat-bottom (without nt sigma(o) >> 1), h can be used to estimate the temperature sensitivity of individual resonance with an analytic formula constructed from fitting, telling a relation between the temperature error and h. Moreover, spread of emission time caused by the moderator, phosphorescent decay of the scintillator, and background fraction are all included in numerical simulations to reveal their influences. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:528 / 538
页数:11
相关论文
共 50 条
  • [21] Non-invasive measurement of human brain temperature using magnetic resonance spectroscopy
    Yoshioka, Y.
    Oikawa, H.
    Kanbara, Y.
    Matsumura, Y.
    Ehara, S.
    Inoue, T.
    Ogawa, A.
    BIORHEOLOGY, 2008, 45 (1-2) : 101 - 102
  • [22] NEUTRON RESONANCE SPECTROSCOPY - ARGON
    LIOU, HI
    RAINWATER, J
    HACKEN, G
    SINGH, UN
    PHYSICAL REVIEW C, 1975, 11 (02): : 457 - 461
  • [23] NEUTRON RESONANCE SPECTROSCOPY - TA
    HACKEN, G
    WERBIN, R
    RAINWATER, J
    PHYSICAL REVIEW C, 1978, 17 (01): : 43 - 50
  • [24] NEUTRON RESONANCE SPECTROSCOPY - MAGNESIUM
    SINGH, UN
    LIOU, HI
    RAINWATER, J
    HACKEN, G
    GARG, JB
    PHYSICAL REVIEW C, 1974, 10 (06): : 2150 - 2152
  • [25] NEUTRON RESONANCE SPECTROSCOPY - ALUMINUM
    SINGH, UN
    RAINWATER, J
    LIOU, HI
    HACKEN, G
    GARG, JB
    PHYSICAL REVIEW C, 1975, 11 (04): : 1117 - 1121
  • [26] NEUTRON RESONANCE SPECTROSCOPY AT NEVIS
    HACKEN, G
    LIOU, HI
    RAINWATER, J
    SINGH, UN
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (02): : 167 - 167
  • [27] NEUTRON RESONANCE SPECTROSCOPY - CHLORINE
    SINGH, UN
    LIOU, HI
    HACKEN, G
    SLAGOWITZ, M
    RAHN, F
    RAINWATER, J
    MAKOFSKE, W
    GARG, JB
    PHYSICAL REVIEW C, 1974, 10 (06): : 2138 - 2142
  • [28] Neutron Resonance Spectroscopy at GELINA
    Schillebeeckx, P.
    Borella, A.
    Kopecky, S.
    Lampoudis, C.
    Massimi, C.
    Moxon, M.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 59 (02) : 1563 - 1568
  • [29] NEUTRON RESONANCE SPECTROSCOPY - FLUORINE
    SINGH, UN
    LIOU, HI
    RAINWATER, J
    HACKEN, G
    GARG, JB
    PHYSICAL REVIEW C, 1974, 10 (06): : 2147 - 2150
  • [30] NEUTRON RESONANCE SPECTROSCOPY - CALCIUM
    SINGH, UN
    LIOU, HI
    RAINWATE.J
    HACKEN, G
    MAKOFSKE, W
    GARG, JB
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (04): : 573 - 574