The SIR epidemic model from a PDE point of view

被引:29
|
作者
Chalub, Fabio A. C. C. [2 ,3 ]
Souza, Max O. [1 ]
机构
[1] Univ Fed Fluminense, Dept Matemat Aplicada, BR-22240920 Niteroi, RJ, Brazil
[2] Univ Nova Lisboa, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal
[3] Univ Nova Lisboa, Ctr Matemat & Aplicacoes, P-2829516 Quinta Da Torre, Caparica, Portugal
关键词
Epidemiology; Markov chains; Conservation laws; Thermodynamical limit; MATHEMATICAL-THEORY; ENDEMICITY;
D O I
10.1016/j.mcm.2010.05.036
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a derivation of the classical Susceptible-Infected-Removed (SIR) and Susceptible-Infected-Removed-Susceptible (SIRS) models through a mean-field approximation from a discrete version of SIR(S). We then obtain a hyperbolic forward Kolmogorov equation, and show that its projected characteristics recover the standard SIR(S) model. Moreover, for the SIRS model, we show that the long time limit of the SIRS model will be a Dirac measure supported on the corresponding isolated equilibria. For the SIR model, we show that the long time limit is a Radon measure supported in a segment of nonisolated equilibria. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1568 / 1574
页数:7
相关论文
共 50 条
  • [1] PDE from the Point of View of Multiplier Ideals
    Kohn, Joseph J.
    CELEBRATION OF THE MATHEMATICAL LEGACY OF RAOUL BOTT, 2010, 50 : 79 - 96
  • [2] A generalization of pde's from a Krylov point of view
    Harvey, F. Reese
    Lawson, H. Blaine, Jr.
    ADVANCES IN MATHEMATICS, 2020, 372
  • [3] Stochastic PDE from the Point of View of Particle Systems and Duality
    Mueller, Carl
    Stochastic Analysis: A Series of Lectures, 2015, 68 : 271 - 295
  • [4] Extending the SIR epidemic model
    Satsuma, J
    Willox, R
    Ramani, A
    Grammaticos, B
    Carstea, AS
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 336 (3-4) : 369 - 375
  • [5] Explicit formulae for the peak time of an epidemic from the SIR model
    Turkyilmazoglu, Mustafa
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 422
  • [6] A SIR epidemic model for citation dynamics
    Sandro M. Reia
    José F. Fontanari
    The European Physical Journal Plus, 136
  • [7] A SIR epidemic model for citation dynamics
    Reia, Sandro M.
    Fontanari, Jose F.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (02):
  • [8] A SIR epidemic model with incubation period
    Tchuenche, Jean M.
    AFRIKA MATEMATIKA, 2015, 26 (1-2) : 77 - 85
  • [9] Phase portraits of an SIR epidemic model
    Llibre, Jaume
    Salhi, Tayeb
    APPLICABLE ANALYSIS, 2024, 103 (06) : 1165 - 1175
  • [10] Rich dynamics of an SIR epidemic model
    Pathak, S.
    Maiti, A.
    Samanta, G. P.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2010, 15 (01): : 71 - 81