Extending the SIR epidemic model

被引:111
|
作者
Satsuma, J
Willox, R
Ramani, A
Grammaticos, B
Carstea, AS
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
[2] Ecole Polytech, CNRS, UMR 7644, F-91128 Palaiseau, France
[3] Univ Paris 07, GMPIB, F-75251 Paris, France
[4] Inst Phys & Nucl Engn, Bucharest, Romania
基金
日本学术振兴会;
关键词
population dynamics; epidemic; discrete-time; cellular automaton;
D O I
10.1016/j.physa.2003.12.035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate possible extensions of the susceptible-infective-removed (SIR) epidemic model. We show that there exists a large class of functions representing interaction between the susceptible and infective populations for which the model has a realistic behaviour and preserves the essential features of the classical SIR model. We also present a new discretisation of the SIR model which has the advantage of possessing a conserved quantity, thus making possible the estimation of the non-infected population at the end of the epidemic. A cellular automaton SIR is also constructed on the basis of the discrete-time system. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:369 / 375
页数:7
相关论文
共 50 条
  • [1] A SIR epidemic model for citation dynamics
    Sandro M. Reia
    José F. Fontanari
    The European Physical Journal Plus, 136
  • [2] A SIR epidemic model for citation dynamics
    Reia, Sandro M.
    Fontanari, Jose F.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (02):
  • [3] A SIR epidemic model with incubation period
    Tchuenche, Jean M.
    AFRIKA MATEMATIKA, 2015, 26 (1-2) : 77 - 85
  • [4] Phase portraits of an SIR epidemic model
    Llibre, Jaume
    Salhi, Tayeb
    APPLICABLE ANALYSIS, 2024, 103 (06) : 1165 - 1175
  • [5] Rich dynamics of an SIR epidemic model
    Pathak, S.
    Maiti, A.
    Samanta, G. P.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2010, 15 (01): : 71 - 81
  • [6] An SIR epidemic model with free boundary
    Kim, Kwang Ik
    Lin, Zhigui
    Zhang, Qunying
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (05) : 1992 - 2001
  • [7] A SIR Epidemic Model Allowing Recovery
    Pakes, Anthony G.
    AXIOMS, 2024, 13 (02)
  • [8] Optimal Control For An SIR Epidemic Model
    Yang, Guang
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 515 - 518
  • [9] Fundamental bound on epidemic overshoot in the SIR model
    Nguyen, Maximilian M.
    Freedman, Ari S.
    Ozbay, Sinan A.
    Levin, Simon A.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2023, 20 (209)
  • [10] Approximate and Parametric Solutions to SIR Epidemic Model
    Bougoffa, Lazhar
    Bougouffa, Smail
    Khanfer, Ammar
    AXIOMS, 2024, 13 (03)